Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
31 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics |
Beschreibung: | 1 Online-Ressource (VII, 266 p) |
ISBN: | 9783642578762 9783540653776 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-57876-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422687 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642578762 |c Online |9 978-3-642-57876-2 | ||
020 | |a 9783540653776 |c Print |9 978-3-540-65377-6 | ||
024 | 7 | |a 10.1007/978-3-642-57876-2 |2 doi | |
035 | |a (OCoLC)863778381 | ||
035 | |a (DE-599)BVBBV042422687 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Partial Differential Equations II |b Elements of the Modern Theory. Equations with Constant Coefficients |c edited by Yu. V. Egorov, M. A. Shubin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VII, 266 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of Mathematical Sciences |v 31 |x 0938-0396 | |
500 | |a This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
700 | 1 | |a Egorov, Yu. V. |4 edt | |
700 | 1 | |a Shubin, M. A. |4 edt | |
830 | 0 | |a Encyclopaedia of Mathematical Sciences |v 31 |w (DE-604)BV024126459 |9 31 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-57876-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858104 |
Datensatz im Suchindex
_version_ | 1804153097490006016 |
---|---|
any_adam_object | |
author2 | Egorov, Yu. V. Shubin, M. A. |
author2_role | edt edt |
author2_variant | y v e yv yve m a s ma mas |
author_facet | Egorov, Yu. V. Shubin, M. A. |
building | Verbundindex |
bvnumber | BV042422687 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863778381 (DE-599)BVBBV042422687 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-57876-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02520nmm a2200481zcb4500</leader><controlfield tag="001">BV042422687</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642578762</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-57876-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540653776</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-65377-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57876-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863778381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422687</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations II</subfield><subfield code="b">Elements of the Modern Theory. Equations with Constant Coefficients</subfield><subfield code="c">edited by Yu. V. Egorov, M. A. Shubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 266 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">31</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Egorov, Yu. V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shubin, M. A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">31</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">31</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57876-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858104</subfield></datafield></record></collection> |
id | DE-604.BV042422687 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642578762 9783540653776 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858104 |
oclc_num | 863778381 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 266 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Encyclopaedia of Mathematical Sciences |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients edited by Yu. V. Egorov, M. A. Shubin Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VII, 266 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 31 0938-0396 This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Egorov, Yu. V. edt Shubin, M. A. edt Encyclopaedia of Mathematical Sciences 31 (DE-604)BV024126459 31 https://doi.org/10.1007/978-3-642-57876-2 Verlag Volltext |
spellingShingle | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients Encyclopaedia of Mathematical Sciences Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
title | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients |
title_auth | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients |
title_exact_search | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients |
title_full | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients edited by Yu. V. Egorov, M. A. Shubin |
title_fullStr | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients edited by Yu. V. Egorov, M. A. Shubin |
title_full_unstemmed | Partial Differential Equations II Elements of the Modern Theory. Equations with Constant Coefficients edited by Yu. V. Egorov, M. A. Shubin |
title_short | Partial Differential Equations II |
title_sort | partial differential equations ii elements of the modern theory equations with constant coefficients |
title_sub | Elements of the Modern Theory. Equations with Constant Coefficients |
topic | Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
topic_facet | Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-3-642-57876-2 |
volume_link | (DE-604)BV024126459 |
work_keys_str_mv | AT egorovyuv partialdifferentialequationsiielementsofthemoderntheoryequationswithconstantcoefficients AT shubinma partialdifferentialequationsiielementsofthemoderntheoryequationswithconstantcoefficients |