Partial Differential Equations IV: Microlocal Analysis and Hyperbolic Equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states necessary and sufficient conditions for C?- and L2 -well-posedness and he studies the analogous problem in the context of Gevrey classes. He also gives the latest results in the theory of mixed problems for hyperbolic operators and a list of unsolved problems. Both parts cover recent research in an important field, which before was scattered in numerous journals. The book will hence be of immense value to graduate students and researchers in partial differential equations and theoretical physics |
Beschreibung: | 1 Online-Ressource (VIII, 244 p) |
ISBN: | 9783662092071 9783642080999 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-09207-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423419 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783662092071 |c Online |9 978-3-662-09207-1 | ||
020 | |a 9783642080999 |c Print |9 978-3-642-08099-9 | ||
024 | 7 | |a 10.1007/978-3-662-09207-1 |2 doi | |
035 | |a (OCoLC)863897614 | ||
035 | |a (DE-599)BVBBV042423419 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Egorov, Yu. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations IV |b Microlocal Analysis and Hyperbolic Equations |c edited by Yu. V. Egorov, M. A. Shubin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (VIII, 244 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 33 |x 0938-0396 | |
500 | |a In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states necessary and sufficient conditions for C?- and L2 -well-posedness and he studies the analogous problem in the context of Gevrey classes. He also gives the latest results in the theory of mixed problems for hyperbolic operators and a list of unsolved problems. Both parts cover recent research in an important field, which before was scattered in numerous journals. The book will hence be of immense value to graduate students and researchers in partial differential equations and theoretical physics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Shubin, M. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09207-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858836 |
Datensatz im Suchindex
_version_ | 1804153099120541696 |
---|---|
any_adam_object | |
author | Egorov, Yu. V. |
author_facet | Egorov, Yu. V. |
author_role | aut |
author_sort | Egorov, Yu. V. |
author_variant | y v e yv yve |
building | Verbundindex |
bvnumber | BV042423419 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863897614 (DE-599)BVBBV042423419 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09207-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02572nmm a2200433zcb4500</leader><controlfield tag="001">BV042423419</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662092071</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09207-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642080999</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08099-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09207-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863897614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423419</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egorov, Yu. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations IV</subfield><subfield code="b">Microlocal Analysis and Hyperbolic Equations</subfield><subfield code="c">edited by Yu. V. Egorov, M. A. Shubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 244 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">33</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states necessary and sufficient conditions for C?- and L2 -well-posedness and he studies the analogous problem in the context of Gevrey classes. He also gives the latest results in the theory of mixed problems for hyperbolic operators and a list of unsolved problems. Both parts cover recent research in an important field, which before was scattered in numerous journals. The book will hence be of immense value to graduate students and researchers in partial differential equations and theoretical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shubin, M. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09207-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858836</subfield></datafield></record></collection> |
id | DE-604.BV042423419 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662092071 9783642080999 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858836 |
oclc_num | 863897614 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 244 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Egorov, Yu. V. Verfasser aut Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations edited by Yu. V. Egorov, M. A. Shubin Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (VIII, 244 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 33 0938-0396 In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states necessary and sufficient conditions for C?- and L2 -well-posedness and he studies the analogous problem in the context of Gevrey classes. He also gives the latest results in the theory of mixed problems for hyperbolic operators and a list of unsolved problems. Both parts cover recent research in an important field, which before was scattered in numerous journals. The book will hence be of immense value to graduate students and researchers in partial differential equations and theoretical physics Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Shubin, M. A. Sonstige oth https://doi.org/10.1007/978-3-662-09207-1 Verlag Volltext |
spellingShingle | Egorov, Yu. V. Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
title | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations |
title_auth | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations |
title_exact_search | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations |
title_full | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations edited by Yu. V. Egorov, M. A. Shubin |
title_fullStr | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations edited by Yu. V. Egorov, M. A. Shubin |
title_full_unstemmed | Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations edited by Yu. V. Egorov, M. A. Shubin |
title_short | Partial Differential Equations IV |
title_sort | partial differential equations iv microlocal analysis and hyperbolic equations |
title_sub | Microlocal Analysis and Hyperbolic Equations |
topic | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-09207-1 |
work_keys_str_mv | AT egorovyuv partialdifferentialequationsivmicrolocalanalysisandhyperbolicequations AT shubinma partialdifferentialequationsivmicrolocalanalysisandhyperbolicequations |