Partial Differential Equations VI: Elliptic and Parabolic Operators
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
63 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space |
Beschreibung: | 1 Online-Ressource (VII, 325 p) |
ISBN: | 9783662092095 9783642081170 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-09209-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423420 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783662092095 |c Online |9 978-3-662-09209-5 | ||
020 | |a 9783642081170 |c Print |9 978-3-642-08117-0 | ||
024 | 7 | |a 10.1007/978-3-662-09209-5 |2 doi | |
035 | |a (OCoLC)863941188 | ||
035 | |a (DE-599)BVBBV042423420 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Egorov, Yu. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations VI |b Elliptic and Parabolic Operators |c edited by Yu. V. Egorov, M. A. Shubin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VII, 325 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 63 |x 0938-0396 | |
500 | |a 0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Shubin, M. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09209-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858837 |
Datensatz im Suchindex
_version_ | 1804153099124736000 |
---|---|
any_adam_object | |
author | Egorov, Yu. V. |
author_facet | Egorov, Yu. V. |
author_role | aut |
author_sort | Egorov, Yu. V. |
author_variant | y v e yv yve |
building | Verbundindex |
bvnumber | BV042423420 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863941188 (DE-599)BVBBV042423420 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09209-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02965nmm a2200433zcb4500</leader><controlfield tag="001">BV042423420</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662092095</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09209-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081170</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08117-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09209-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863941188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egorov, Yu. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations VI</subfield><subfield code="b">Elliptic and Parabolic Operators</subfield><subfield code="c">edited by Yu. V. Egorov, M. A. Shubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 325 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">63</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shubin, M. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09209-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858837</subfield></datafield></record></collection> |
id | DE-604.BV042423420 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662092095 9783642081170 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858837 |
oclc_num | 863941188 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 325 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Egorov, Yu. V. Verfasser aut Partial Differential Equations VI Elliptic and Parabolic Operators edited by Yu. V. Egorov, M. A. Shubin Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VII, 325 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 63 0938-0396 0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik Shubin, M. A. Sonstige oth https://doi.org/10.1007/978-3-662-09209-5 Verlag Volltext |
spellingShingle | Egorov, Yu. V. Partial Differential Equations VI Elliptic and Parabolic Operators Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
title | Partial Differential Equations VI Elliptic and Parabolic Operators |
title_auth | Partial Differential Equations VI Elliptic and Parabolic Operators |
title_exact_search | Partial Differential Equations VI Elliptic and Parabolic Operators |
title_full | Partial Differential Equations VI Elliptic and Parabolic Operators edited by Yu. V. Egorov, M. A. Shubin |
title_fullStr | Partial Differential Equations VI Elliptic and Parabolic Operators edited by Yu. V. Egorov, M. A. Shubin |
title_full_unstemmed | Partial Differential Equations VI Elliptic and Parabolic Operators edited by Yu. V. Egorov, M. A. Shubin |
title_short | Partial Differential Equations VI |
title_sort | partial differential equations vi elliptic and parabolic operators |
title_sub | Elliptic and Parabolic Operators |
topic | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-09209-5 |
work_keys_str_mv | AT egorovyuv partialdifferentialequationsviellipticandparabolicoperators AT shubinma partialdifferentialequationsviellipticandparabolicoperators |