Python for TensorFlow Pocket Primer:
As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapter...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Herndon
Mercury Learning and Information
[2019]
|
Schriftenreihe: | Pocket Primer
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features:A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.xContains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topicsIncludes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operatorsAssumes the reader has very limited experienceCompanion files with all of the source code examples (download from the publisher) |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) |
Beschreibung: | 1 Online-Ressource (218 Seiten) |
ISBN: | 9781683923633 |
DOI: | 10.1515/9781683923633 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049580678 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240222s2019 xx o|||| 00||| eng d | ||
020 | |a 9781683923633 |9 978-1-68392-363-3 | ||
024 | 7 | |a 10.1515/9781683923633 |2 doi | |
035 | |a (ZDB-23-DGG)9781683923633 | ||
035 | |a (OCoLC)1191843296 | ||
035 | |a (DE-599)BVBBV049580678 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 005.133 |2 23 | |
100 | 1 | |a Campesato, Oswald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python for TensorFlow Pocket Primer |c Oswald Campesato |
264 | 1 | |a Herndon |b Mercury Learning and Information |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (218 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pocket Primer | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) | ||
520 | |a As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features:A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.xContains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topicsIncludes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operatorsAssumes the reader has very limited experienceCompanion files with all of the source code examples (download from the publisher) | ||
546 | |a In English | ||
650 | 4 | |a Programming | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
650 | 4 | |a Python (Computer program language) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683923619 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034925610 | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683923633?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508242722553858 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campesato, Oswald |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049580678 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781683923633 (OCoLC)1191843296 (DE-599)BVBBV049580678 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1515/9781683923633 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049580678</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240222s2019 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683923633</subfield><subfield code="9">978-1-68392-363-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683923633</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683923633</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1191843296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049580678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python for TensorFlow Pocket Primer</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Herndon</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (218 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pocket Primer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features:A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.xContains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topicsIncludes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operatorsAssumes the reader has very limited experienceCompanion files with all of the source code examples (download from the publisher)</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683923619</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034925610</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683923633?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049580678 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:32:02Z |
indexdate | 2025-02-19T17:37:30Z |
institution | BVB |
isbn | 9781683923633 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034925610 |
oclc_num | 1191843296 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (218 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Mercury Learning and Information |
record_format | marc |
series2 | Pocket Primer |
spelling | Campesato, Oswald Verfasser aut Python for TensorFlow Pocket Primer Oswald Campesato Herndon Mercury Learning and Information [2019] © 2019 1 Online-Ressource (218 Seiten) txt rdacontent c rdamedia cr rdacarrier Pocket Primer Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features:A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.xContains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topicsIncludes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operatorsAssumes the reader has very limited experienceCompanion files with all of the source code examples (download from the publisher) In English Programming COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) Erscheint auch als Druck-Ausgabe 9781683923619 https://doi.org/10.1515/9781683923633?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Campesato, Oswald Python for TensorFlow Pocket Primer Programming COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) |
title | Python for TensorFlow Pocket Primer |
title_auth | Python for TensorFlow Pocket Primer |
title_exact_search | Python for TensorFlow Pocket Primer |
title_exact_search_txtP | Python for TensorFlow Pocket Primer |
title_full | Python for TensorFlow Pocket Primer Oswald Campesato |
title_fullStr | Python for TensorFlow Pocket Primer Oswald Campesato |
title_full_unstemmed | Python for TensorFlow Pocket Primer Oswald Campesato |
title_short | Python for TensorFlow Pocket Primer |
title_sort | python for tensorflow pocket primer |
topic | Programming COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) |
topic_facet | Programming COMPUTERS / Programming Languages / Python Python (Computer program language) |
url | https://doi.org/10.1515/9781683923633?locatt=mode:legacy |
work_keys_str_mv | AT campesatooswald pythonfortensorflowpocketprimer |