Python for TensorFlow Pocket Primer:

As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Campesato, Oswald (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Herndon Mercury Learning and Information [2019]
Schriftenreihe:Pocket Primer
Schlagworte:
Online-Zugang:DE-1046
DE-1043
DE-858
DE-859
DE-860
DE-739
URL des Erstveröffentlichers
Zusammenfassung:As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features:A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.xContains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topicsIncludes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operatorsAssumes the reader has very limited experienceCompanion files with all of the source code examples (download from the publisher)
Beschreibung:Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023)
Beschreibung:1 Online-Ressource (218 Seiten)
ISBN:9781683923633
DOI:10.1515/9781683923633

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen