Python Tools for Data Scientists Pocket Primer:
As part of the best-selling Pocket Primer series, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapte...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Herndon
Mercury Learning and Information
[2022]
|
Schriftenreihe: | Pocket Primer
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | As part of the best-selling Pocket Primer series, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapters on data visualization and working with Sklearn and SciPy. Companion files with source code are available. FEATURES:Introduces Python, NumPy, Sklearn, SciPy, and awkCovers data cleaning tasks and data visualizationFeatures numerous code samples throughoutIncludes companion files with source code |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) |
Beschreibung: | 1 Online-Ressource (300 Seiten) |
ISBN: | 9781683928225 |
DOI: | 10.1515/9781683928225 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049580752 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240222s2022 xx o|||| 00||| eng d | ||
020 | |a 9781683928225 |9 978-1-68392-822-5 | ||
024 | 7 | |a 10.1515/9781683928225 |2 doi | |
035 | |a (ZDB-23-DGG)9781683928225 | ||
035 | |a (OCoLC)1349278708 | ||
035 | |a (DE-599)BVBBV049580752 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 658.403 | |
100 | 1 | |a Campesato, Oswald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python Tools for Data Scientists Pocket Primer |c Oswald Campesato |
264 | 1 | |a Herndon |b Mercury Learning and Information |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (300 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pocket Primer | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) | ||
520 | |a As part of the best-selling Pocket Primer series, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapters on data visualization and working with Sklearn and SciPy. Companion files with source code are available. FEATURES:Introduces Python, NumPy, Sklearn, SciPy, and awkCovers data cleaning tasks and data visualizationFeatures numerous code samples throughoutIncludes companion files with source code | ||
546 | |a In English | ||
650 | 4 | |a Data | |
650 | 4 | |a Programming | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683928232 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034925683 | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683928225?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508242939609088 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campesato, Oswald |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049580752 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781683928225 (OCoLC)1349278708 (DE-599)BVBBV049580752 |
dewey-full | 658.403 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.403 |
dewey-search | 658.403 |
dewey-sort | 3658.403 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1515/9781683928225 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049580752</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240222s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683928225</subfield><subfield code="9">978-1-68392-822-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683928225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683928225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1349278708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049580752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.403</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python Tools for Data Scientists Pocket Primer</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Herndon</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (300 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pocket Primer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As part of the best-selling Pocket Primer series, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapters on data visualization and working with Sklearn and SciPy. Companion files with source code are available. FEATURES:Introduces Python, NumPy, Sklearn, SciPy, and awkCovers data cleaning tasks and data visualizationFeatures numerous code samples throughoutIncludes companion files with source code</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683928232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034925683</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683928225?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049580752 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:32:02Z |
indexdate | 2025-02-19T17:37:31Z |
institution | BVB |
isbn | 9781683928225 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034925683 |
oclc_num | 1349278708 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (300 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Mercury Learning and Information |
record_format | marc |
series2 | Pocket Primer |
spelling | Campesato, Oswald Verfasser aut Python Tools for Data Scientists Pocket Primer Oswald Campesato Herndon Mercury Learning and Information [2022] © 2022 1 Online-Ressource (300 Seiten) txt rdacontent c rdamedia cr rdacarrier Pocket Primer Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) As part of the best-selling Pocket Primer series, this book is designed to provide a thorough introduction to numerous Python tools for data scientists. The book covers features of NumPy and Pandas, how to write regular expressions, and how to perform data cleaning tasks. It includes separate chapters on data visualization and working with Sklearn and SciPy. Companion files with source code are available. FEATURES:Introduces Python, NumPy, Sklearn, SciPy, and awkCovers data cleaning tasks and data visualizationFeatures numerous code samples throughoutIncludes companion files with source code In English Data Programming COMPUTERS / Programming Languages / Python bisacsh Erscheint auch als Druck-Ausgabe 9781683928232 https://doi.org/10.1515/9781683928225?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Campesato, Oswald Python Tools for Data Scientists Pocket Primer Data Programming COMPUTERS / Programming Languages / Python bisacsh |
title | Python Tools for Data Scientists Pocket Primer |
title_auth | Python Tools for Data Scientists Pocket Primer |
title_exact_search | Python Tools for Data Scientists Pocket Primer |
title_exact_search_txtP | Python Tools for Data Scientists Pocket Primer |
title_full | Python Tools for Data Scientists Pocket Primer Oswald Campesato |
title_fullStr | Python Tools for Data Scientists Pocket Primer Oswald Campesato |
title_full_unstemmed | Python Tools for Data Scientists Pocket Primer Oswald Campesato |
title_short | Python Tools for Data Scientists Pocket Primer |
title_sort | python tools for data scientists pocket primer |
topic | Data Programming COMPUTERS / Programming Languages / Python bisacsh |
topic_facet | Data Programming COMPUTERS / Programming Languages / Python |
url | https://doi.org/10.1515/9781683928225?locatt=mode:legacy |
work_keys_str_mv | AT campesatooswald pythontoolsfordatascientistspocketprimer |