Interpretable machine learning: a guide for making black box models explainable
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Munich
Christoph Molnar
2022
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | kostenfrei Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | x, 317 Seiten Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047910125 | ||
003 | DE-604 | ||
005 | 20230801 | ||
007 | t | ||
008 | 220404s2022 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1254174508 |2 DE-101 | |
020 | |z 9798411463330 |q Amazon |c Broschur |9 9798411463330 | ||
035 | |a (OCoLC)1310244840 | ||
035 | |a (DE-599)DNB1254174508 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-91 |a DE-12 |a DE-473 |a DE-355 |a DE-898 |a DE-188 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Molnar, Christoph |d 1989- |e Verfasser |0 (DE-588)1222925737 |4 aut | |
245 | 1 | 0 | |a Interpretable machine learning |b a guide for making black box models explainable |c Christoph Molnar |
250 | |a Second edition | ||
264 | 1 | |a Munich |b Christoph Molnar |c 2022 | |
300 | |a x, 317 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o https://leanpub.com/interpretable-machine-learning |
856 | 4 | 1 | |u https://christophm.github.io/interpretable-ml-book/ |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1254174508/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033291908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033291908 |
Datensatz im Suchindex
_version_ | 1811977099789991936 |
---|---|
adam_text |
CONTENTS
PREFACE
BY
THE
AUTHOR
IX
1
INTRODUCTION
1
1.1
STORY
TIME
.
3
1.2
WHAT
IS
MACHINE
LEARNING?
.
9
1.3
TERMINOLOGY
.
10
2
INTERPRETABILITY
13
2.1
IMPORTANCE
OF
INTERPRETABILITY
.
13
2.2
TAXONOMY
OF
INTERPRETABILITY
METHODS
.
18
2.3
SCOPE
OF
INTERPRETABILITY
.
20
2.4
EVALUATION
OF
INTERPRETABILITY
.
22
2.5
PROPERTIES
OF
EXPLANATIONS
.
22
2.6
HUMAN-FRIENDLY
EXPLANATIONS
.
25
3
DATASETS
31
3.1
BIKE
RENTALS
(REGRESSION)
.
31
3.2
YOUTUBE
SPAM
COMMENTS
(TEXT
CLASSIFICATION)
.
32
3.3
RISK
FACTORS
FOR
CERVICAL
CANCER
(CLASSIFICATION)
.
33
4
INTERPRETABLE
MODELS
35
4.1
LINEAR
REGRESSION
.
37
4.2
LOGISTIC
REGRESSION
.
52
4.3
GLM,
GAM
AND
MORE
.
58
4.4
DECISION
TREE
.
76
4.5
DECISION
RULES
.
82
4.6
RULEFIT
.
98
4.7
OTHER
INTERPRETABLE
MODELS
.
106
5
MODEL-AGNOSTIC
METHODS
109
6
EXAMPLE-BASED
EXPLANATIONS
113
7
GLOBAL
MODEL-AGNOSTIC
METHODS
115
7.1
PARTIAL
DEPENDENCE
PLOT
(PDP)
.
116
7.2
ACCUMULATED
LOCAL
EFFECTS
(ALE)
PLOT
.
122
7.3
FEATURE
INTERACTION
.
140
7.4
FUNCTIONAL
DECOMPOSITON
.
147
7.5
PERMUTATION
FEATURE
IMPORTANCE
.
157
7.6
GLOBAL
SURROGATE
.
165
7.7
PROTOTYPES
AND
CRITICISMS
.
170
8
LOCAL
MODEL-AGNOSTIC
METHODS
179
8.1
INDIVIDUAL
CONDITIONAL
EXPECTATION
(ICE)
.
180
8.2
LOCAL
SURROGATE
(LIME)
.
185
8.3
COUNTERFACTUAL
EXPLANATIONS
.
194
8.4
SCOPED
RULES
(ANCHORS)
.
205
8.5
SHAPLEY
VALUES
.
215
8.6
SHAP
(SHAPLEY
ADDITIVE
EXPLANATIONS)
.
227
9
NEURAL
NETWORK
INTERPRETATION
241
9.1
LEARNED
FEATURES
.
243
9.2
PIXEL
ATTRIBUTION
(SALIENCY
MAPS)
.
254
9.3
DETECTING
CONCEPTS
.
265
9.4
ADVERSARIAL
EXAMPLES
.
270
9.5
INFLUENTIAL
INSTANCES
.
279
10
A
LOOK
INTO
THE
CRYSTAL
BALL
295
10.1
THE
FUTURE
OF
MACHINE
LEARNING
.
296
10.2
THE
FUTURE
OF
INTERPRETABILITY
.
298
11
CONTRIBUTE
TO
THE
BOOK
301
12
CITING
THIS
BOOK
303
13
TRANSLATIONS
305
14
ACKNOWLEDGEMENTS
307 |
adam_txt |
CONTENTS
PREFACE
BY
THE
AUTHOR
IX
1
INTRODUCTION
1
1.1
STORY
TIME
.
3
1.2
WHAT
IS
MACHINE
LEARNING?
.
9
1.3
TERMINOLOGY
.
10
2
INTERPRETABILITY
13
2.1
IMPORTANCE
OF
INTERPRETABILITY
.
13
2.2
TAXONOMY
OF
INTERPRETABILITY
METHODS
.
18
2.3
SCOPE
OF
INTERPRETABILITY
.
20
2.4
EVALUATION
OF
INTERPRETABILITY
.
22
2.5
PROPERTIES
OF
EXPLANATIONS
.
22
2.6
HUMAN-FRIENDLY
EXPLANATIONS
.
25
3
DATASETS
31
3.1
BIKE
RENTALS
(REGRESSION)
.
31
3.2
YOUTUBE
SPAM
COMMENTS
(TEXT
CLASSIFICATION)
.
32
3.3
RISK
FACTORS
FOR
CERVICAL
CANCER
(CLASSIFICATION)
.
33
4
INTERPRETABLE
MODELS
35
4.1
LINEAR
REGRESSION
.
37
4.2
LOGISTIC
REGRESSION
.
52
4.3
GLM,
GAM
AND
MORE
.
58
4.4
DECISION
TREE
.
76
4.5
DECISION
RULES
.
82
4.6
RULEFIT
.
98
4.7
OTHER
INTERPRETABLE
MODELS
.
106
5
MODEL-AGNOSTIC
METHODS
109
6
EXAMPLE-BASED
EXPLANATIONS
113
7
GLOBAL
MODEL-AGNOSTIC
METHODS
115
7.1
PARTIAL
DEPENDENCE
PLOT
(PDP)
.
116
7.2
ACCUMULATED
LOCAL
EFFECTS
(ALE)
PLOT
.
122
7.3
FEATURE
INTERACTION
.
140
7.4
FUNCTIONAL
DECOMPOSITON
.
147
7.5
PERMUTATION
FEATURE
IMPORTANCE
.
157
7.6
GLOBAL
SURROGATE
.
165
7.7
PROTOTYPES
AND
CRITICISMS
.
170
8
LOCAL
MODEL-AGNOSTIC
METHODS
179
8.1
INDIVIDUAL
CONDITIONAL
EXPECTATION
(ICE)
.
180
8.2
LOCAL
SURROGATE
(LIME)
.
185
8.3
COUNTERFACTUAL
EXPLANATIONS
.
194
8.4
SCOPED
RULES
(ANCHORS)
.
205
8.5
SHAPLEY
VALUES
.
215
8.6
SHAP
(SHAPLEY
ADDITIVE
EXPLANATIONS)
.
227
9
NEURAL
NETWORK
INTERPRETATION
241
9.1
LEARNED
FEATURES
.
243
9.2
PIXEL
ATTRIBUTION
(SALIENCY
MAPS)
.
254
9.3
DETECTING
CONCEPTS
.
265
9.4
ADVERSARIAL
EXAMPLES
.
270
9.5
INFLUENTIAL
INSTANCES
.
279
10
A
LOOK
INTO
THE
CRYSTAL
BALL
295
10.1
THE
FUTURE
OF
MACHINE
LEARNING
.
296
10.2
THE
FUTURE
OF
INTERPRETABILITY
.
298
11
CONTRIBUTE
TO
THE
BOOK
301
12
CITING
THIS
BOOK
303
13
TRANSLATIONS
305
14
ACKNOWLEDGEMENTS
307 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Molnar, Christoph 1989- |
author_GND | (DE-588)1222925737 |
author_facet | Molnar, Christoph 1989- |
author_role | aut |
author_sort | Molnar, Christoph 1989- |
author_variant | c m cm |
building | Verbundindex |
bvnumber | BV047910125 |
classification_rvk | ST 300 |
collection | ebook |
ctrlnum | (OCoLC)1310244840 (DE-599)DNB1254174508 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV047910125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230801</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220404s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1254174508</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9798411463330</subfield><subfield code="q">Amazon</subfield><subfield code="c">Broschur</subfield><subfield code="9">9798411463330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1310244840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1254174508</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Molnar, Christoph</subfield><subfield code="d">1989-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1222925737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretable machine learning</subfield><subfield code="b">a guide for making black box models explainable</subfield><subfield code="c">Christoph Molnar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich</subfield><subfield code="b">Christoph Molnar</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 317 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">https://leanpub.com/interpretable-machine-learning</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://christophm.github.io/interpretable-ml-book/</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1254174508/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033291908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033291908</subfield></datafield></record></collection> |
id | DE-604.BV047910125 |
illustrated | Illustrated |
index_date | 2024-07-03T19:31:06Z |
indexdate | 2024-10-04T10:00:21Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033291908 |
oclc_num | 1310244840 |
open_access_boolean | 1 |
owner | DE-91 DE-BY-TUM DE-12 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-12 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-188 |
physical | x, 317 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Christoph Molnar |
record_format | marc |
spelling | Molnar, Christoph 1989- Verfasser (DE-588)1222925737 aut Interpretable machine learning a guide for making black box models explainable Christoph Molnar Second edition Munich Christoph Molnar 2022 x, 317 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s DE-604 Erscheint auch als Online-Ausgabe https://leanpub.com/interpretable-machine-learning https://christophm.github.io/interpretable-ml-book/ Verlag kostenfrei Volltext B:DE-101 application/pdf https://d-nb.info/1254174508/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033291908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Molnar, Christoph 1989- Interpretable machine learning a guide for making black box models explainable Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Interpretable machine learning a guide for making black box models explainable |
title_auth | Interpretable machine learning a guide for making black box models explainable |
title_exact_search | Interpretable machine learning a guide for making black box models explainable |
title_exact_search_txtP | Interpretable machine learning a guide for making black box models explainable |
title_full | Interpretable machine learning a guide for making black box models explainable Christoph Molnar |
title_fullStr | Interpretable machine learning a guide for making black box models explainable Christoph Molnar |
title_full_unstemmed | Interpretable machine learning a guide for making black box models explainable Christoph Molnar |
title_short | Interpretable machine learning |
title_sort | interpretable machine learning a guide for making black box models explainable |
title_sub | a guide for making black box models explainable |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen |
url | https://christophm.github.io/interpretable-ml-book/ https://d-nb.info/1254174508/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033291908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT molnarchristoph interpretablemachinelearningaguideformakingblackboxmodelsexplainable |