On grouping and partitioning approaches in interpretable machine learning:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
München
2023
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | xii, 230 Seiten Illustrationen, Diagramme |
DOI: | 10.5282/edoc.32952 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049530039 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 240202s2023 gw a||| m||| 00||| eng d | ||
015 | |a 24,O02 |2 dnb | ||
035 | |a (OCoLC)1422445599 | ||
035 | |a (DE-599)BVBBV049530039 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 1\p |a 006.31 |2 23ksdnb | ||
084 | |8 2\p |a 004 |2 23sdnb | ||
100 | 1 | |a Herbinger, Julia |e Verfasser |0 (DE-588)1316346498 |4 aut | |
245 | 1 | 0 | |a On grouping and partitioning approaches in interpretable machine learning |c Julia Herbinger |
264 | 1 | |a München |c 2023 | |
300 | |a xii, 230 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c München, Ludwig-Maximilians-Universität |d 2023 | ||
650 | 0 | 7 | |8 3\p |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |
650 | 0 | 7 | |8 4\p |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:19-329525 |o 10.5282/edoc.32952 |
856 | 4 | 1 | |u https://doi.org/10.5282/edoc.32952 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:19-329525 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034875719 | ||
883 | 0 | |8 1\p |a emakn |c 0,34432 |d 20240123 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,40031 |d 20240123 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 0 | |8 3\p |a emagnd |c 0,29131 |d 20240123 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 4\p |a emagnd |c 0,19606 |d 20240123 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd |
Datensatz im Suchindex
_version_ | 1804186359267590144 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Herbinger, Julia |
author_GND | (DE-588)1316346498 |
author_facet | Herbinger, Julia |
author_role | aut |
author_sort | Herbinger, Julia |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV049530039 |
collection | ebook |
ctrlnum | (OCoLC)1422445599 (DE-599)BVBBV049530039 |
doi_str_mv | 10.5282/edoc.32952 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01951nam a2200433zc 4500</leader><controlfield tag="001">BV049530039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240202s2023 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,O02</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422445599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049530039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">006.31</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herbinger, Julia</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1316346498</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On grouping and partitioning approaches in interpretable machine learning</subfield><subfield code="c">Julia Herbinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 230 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">München, Ludwig-Maximilians-Universität</subfield><subfield code="d">2023</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">3\p</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:19-329525</subfield><subfield code="o">10.5282/edoc.32952</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.5282/edoc.32952</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:19-329525</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034875719</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,34432</subfield><subfield code="d">20240123</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,40031</subfield><subfield code="d">20240123</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,29131</subfield><subfield code="d">20240123</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,19606</subfield><subfield code="d">20240123</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049530039 |
illustrated | Illustrated |
index_date | 2024-07-03T23:26:51Z |
indexdate | 2024-07-10T10:09:52Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034875719 |
oclc_num | 1422445599 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | xii, 230 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | Herbinger, Julia Verfasser (DE-588)1316346498 aut On grouping and partitioning approaches in interpretable machine learning Julia Herbinger München 2023 xii, 230 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation München, Ludwig-Maximilians-Universität 2023 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Merkmalsextraktion (DE-588)4314440-8 gnd (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:19-329525 10.5282/edoc.32952 https://doi.org/10.5282/edoc.32952 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:19-329525 Resolving-System kostenfrei Volltext 1\p emakn 0,34432 20240123 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,40031 20240123 DE-101 https://d-nb.info/provenance/plan#emasg 3\p emagnd 0,29131 20240123 DE-101 https://d-nb.info/provenance/plan#emagnd 4\p emagnd 0,19606 20240123 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Herbinger, Julia On grouping and partitioning approaches in interpretable machine learning 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Merkmalsextraktion (DE-588)4314440-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4314440-8 (DE-588)4113937-9 |
title | On grouping and partitioning approaches in interpretable machine learning |
title_auth | On grouping and partitioning approaches in interpretable machine learning |
title_exact_search | On grouping and partitioning approaches in interpretable machine learning |
title_exact_search_txtP | On grouping and partitioning approaches in interpretable machine learning |
title_full | On grouping and partitioning approaches in interpretable machine learning Julia Herbinger |
title_fullStr | On grouping and partitioning approaches in interpretable machine learning Julia Herbinger |
title_full_unstemmed | On grouping and partitioning approaches in interpretable machine learning Julia Herbinger |
title_short | On grouping and partitioning approaches in interpretable machine learning |
title_sort | on grouping and partitioning approaches in interpretable machine learning |
topic | 3\p Maschinelles Lernen (DE-588)4193754-5 gnd 4\p Merkmalsextraktion (DE-588)4314440-8 gnd |
topic_facet | Maschinelles Lernen Merkmalsextraktion Hochschulschrift |
url | https://doi.org/10.5282/edoc.32952 https://nbn-resolving.org/urn:nbn:de:bvb:19-329525 |
work_keys_str_mv | AT herbingerjulia ongroupingandpartitioningapproachesininterpretablemachinelearning |