Geometry of möbius transformations: elliptic, parabolic and hyperbolic actions of SL2, (R)
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kisil, Vladimir V. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London, UK Imperial College Press 2012
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:Includes bibliographical references and index
Erlangen programme : preview -- Groups and homogeneous spaces -- Homogeneous spaces from the group SL₂(R) -- The extended Fillmore-Springer-Cnops construction -- Indefinite product space of cycles -- Joint invariants of cycles: orthogonality -- Metric invariants in upper half-planes -- Global geometry of upper half-planes -- Invariant metric and geodesics -- Conformal unit disk -- Unitary rotations
This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered
Beschreibung:1 Online-Ressource (xiv, 192 pages)
ISBN:1848168594
9781848168596

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen