Constrained Willmore surfaces: symmetries of a Möbius invariant integrable system
From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York, NY
Cambridge University Press
2021
|
Schriftenreihe: | London Mathematical Society lecture note series
465 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts |
Beschreibung: | Title from publisher's bibliographic system (viewed on 17 May 2021) |
Beschreibung: | 1 Online-Ressource (xiii, 246 Seiten) |
ISBN: | 9781108885478 |
DOI: | 10.1017/9781108885478 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047341875 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210623s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781108885478 |c Online |9 978-1-108-88547-8 | ||
024 | 7 | |a 10.1017/9781108885478 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108885478 | ||
035 | |a (OCoLC)1257807068 | ||
035 | |a (DE-599)BVBBV047341875 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.1 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Quintino, Áurea Casinhas |d 1974- |0 (DE-588)1225080584 |4 aut | |
245 | 1 | 0 | |a Constrained Willmore surfaces |b symmetries of a Möbius invariant integrable system |c Áurea Casinhas Quintino |
264 | 1 | |a Cambridge, UK ; New York, NY |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xiii, 246 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series | |
490 | 0 | |a 465 | |
500 | |a Title from publisher's bibliographic system (viewed on 17 May 2021) | ||
520 | |a From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts | ||
650 | 4 | |a Transformations (Mathematics) | |
650 | 4 | |a Möbius transformations | |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Willmore-Fläche |0 (DE-588)4844614-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Willmore-Fläche |0 (DE-588)4844614-2 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-79442-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108885478 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032744254 | ||
966 | e | |u https://doi.org/10.1017/9781108885478 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108885478 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182558976507904 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Quintino, Áurea Casinhas 1974- |
author_GND | (DE-588)1225080584 |
author_facet | Quintino, Áurea Casinhas 1974- |
author_role | aut |
author_sort | Quintino, Áurea Casinhas 1974- |
author_variant | á c q ác ácq |
building | Verbundindex |
bvnumber | BV047341875 |
classification_rvk | SK 370 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108885478 (OCoLC)1257807068 (DE-599)BVBBV047341875 |
dewey-full | 516/.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.1 |
dewey-search | 516/.1 |
dewey-sort | 3516 11 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108885478 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03087nmm a2200493zc 4500</leader><controlfield tag="001">BV047341875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210623s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108885478</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-88547-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108885478</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108885478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257807068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047341875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Quintino, Áurea Casinhas</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)1225080584</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constrained Willmore surfaces</subfield><subfield code="b">symmetries of a Möbius invariant integrable system</subfield><subfield code="c">Áurea Casinhas Quintino</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 246 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">465</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 17 May 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Möbius transformations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Willmore-Fläche</subfield><subfield code="0">(DE-588)4844614-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Willmore-Fläche</subfield><subfield code="0">(DE-588)4844614-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-79442-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108885478</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032744254</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108885478</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108885478</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047341875 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:34:37Z |
indexdate | 2024-07-10T09:09:28Z |
institution | BVB |
isbn | 9781108885478 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032744254 |
oclc_num | 1257807068 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (xiii, 246 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series 465 |
spelling | Quintino, Áurea Casinhas 1974- (DE-588)1225080584 aut Constrained Willmore surfaces symmetries of a Möbius invariant integrable system Áurea Casinhas Quintino Cambridge, UK ; New York, NY Cambridge University Press 2021 1 Online-Ressource (xiii, 246 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 465 Title from publisher's bibliographic system (viewed on 17 May 2021) From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts Transformations (Mathematics) Möbius transformations Integrables System (DE-588)4114032-1 gnd rswk-swf Willmore-Fläche (DE-588)4844614-2 gnd rswk-swf Willmore-Fläche (DE-588)4844614-2 s Integrables System (DE-588)4114032-1 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-79442-8 https://doi.org/10.1017/9781108885478 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Quintino, Áurea Casinhas 1974- Constrained Willmore surfaces symmetries of a Möbius invariant integrable system Transformations (Mathematics) Möbius transformations Integrables System (DE-588)4114032-1 gnd Willmore-Fläche (DE-588)4844614-2 gnd |
subject_GND | (DE-588)4114032-1 (DE-588)4844614-2 |
title | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system |
title_auth | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system |
title_exact_search | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system |
title_exact_search_txtP | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system |
title_full | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system Áurea Casinhas Quintino |
title_fullStr | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system Áurea Casinhas Quintino |
title_full_unstemmed | Constrained Willmore surfaces symmetries of a Möbius invariant integrable system Áurea Casinhas Quintino |
title_short | Constrained Willmore surfaces |
title_sort | constrained willmore surfaces symmetries of a mobius invariant integrable system |
title_sub | symmetries of a Möbius invariant integrable system |
topic | Transformations (Mathematics) Möbius transformations Integrables System (DE-588)4114032-1 gnd Willmore-Fläche (DE-588)4844614-2 gnd |
topic_facet | Transformations (Mathematics) Möbius transformations Integrables System Willmore-Fläche |
url | https://doi.org/10.1017/9781108885478 |
work_keys_str_mv | AT quintinoaureacasinhas constrainedwillmoresurfacessymmetriesofamobiusinvariantintegrablesystem |