Asymptotic Methods for Ordinary Differential Equations:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kuzmina, R. P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 2000
Schriftenreihe:Mathematics and Its Applications 512
Schlagworte:
Online-Zugang:Volltext
Beschreibung:In this book we consider a Cauchy problem for a system of ordinary differential equations with a small parameter. The book is divided into th ree parts according to three ways of involving the small parameter in the system. In Part 1 we study the quasiregular Cauchy problem. Th at is, a problem with the singularity included in a bounded function j , which depends on time and a small parameter. This problem is a generalization of the regu­ larly perturbed Cauchy problem studied by Poincare [35]. Some differential equations which are solved by the averaging method can be reduced to a quasiregular Cauchy problem. As an example, in Chapter 2 we consider the van der Pol problem. In Part 2 we study the Tikhonov problem. This is, a Cauchy problem for a system of ordinary differential equations where the coefficients by the derivatives are integer degrees of a small parameter
Beschreibung:1 Online-Ressource (X, 364 p)
ISBN:9789401593472
9789048155002
DOI:10.1007/978-94-015-9347-2

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen