Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications, Soviet Series
89 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations |
Beschreibung: | 1 Online-Ressource (XIV, 331 p) |
ISBN: | 9789401118088 9789401047975 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-011-1808-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423862 | ||
003 | DE-604 | ||
005 | 20151007 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401118088 |c Online |9 978-94-011-1808-8 | ||
020 | |a 9789401047975 |c Print |9 978-94-010-4797-5 | ||
024 | 7 | |a 10.1007/978-94-011-1808-8 |2 doi | |
035 | |a (OCoLC)1184382882 | ||
035 | |a (DE-599)BVBBV042423862 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kiġuraje, I. T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations |c by I. T. Kiguradze, T. A. Chanturia |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XIV, 331 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications, Soviet Series |v 89 |x 0169-6378 | |
500 | |a This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Asymptotisches Lösungsverhalten |0 (DE-588)4134367-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Chanturia, T. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1808-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859279 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100100960256 |
---|---|
any_adam_object | |
author | Kiġuraje, I. T. |
author_facet | Kiġuraje, I. T. |
author_role | aut |
author_sort | Kiġuraje, I. T. |
author_variant | i t k it itk |
building | Verbundindex |
bvnumber | BV042423862 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184382882 (DE-599)BVBBV042423862 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1808-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02929nmm a2200493zcb4500</leader><controlfield tag="001">BV042423862</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151007 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401118088</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1808-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401047975</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4797-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1808-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184382882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423862</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiġuraje, I. T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations</subfield><subfield code="c">by I. T. Kiguradze, T. A. Chanturia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 331 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications, Soviet Series</subfield><subfield code="v">89</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="0">(DE-588)4134367-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chanturia, T. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1808-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859279</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423862 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401118088 9789401047975 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859279 |
oclc_num | 1184382882 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 331 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications, Soviet Series |
spelling | Kiġuraje, I. T. Verfasser aut Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations by I. T. Kiguradze, T. A. Chanturia Dordrecht Springer Netherlands 1993 1 Online-Ressource (XIV, 331 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications, Soviet Series 89 0169-6378 This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations Mathematics Differential Equations Ordinary Differential Equations Mathematik Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Asymptotisches Lösungsverhalten (DE-588)4134367-0 s 1\p DE-604 Chanturia, T. A. Sonstige oth https://doi.org/10.1007/978-94-011-1808-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kiġuraje, I. T. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations Mathematics Differential Equations Ordinary Differential Equations Mathematik Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4134367-0 (DE-588)4020929-5 |
title | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations |
title_auth | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations |
title_exact_search | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations |
title_full | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations by I. T. Kiguradze, T. A. Chanturia |
title_fullStr | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations by I. T. Kiguradze, T. A. Chanturia |
title_full_unstemmed | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations by I. T. Kiguradze, T. A. Chanturia |
title_short | Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations |
title_sort | asymptotic properties of solutions of nonautonomous ordinary differential equations |
topic | Mathematics Differential Equations Ordinary Differential Equations Mathematik Asymptotisches Lösungsverhalten (DE-588)4134367-0 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Mathematics Differential Equations Ordinary Differential Equations Mathematik Asymptotisches Lösungsverhalten Gewöhnliche Differentialgleichung |
url | https://doi.org/10.1007/978-94-011-1808-8 |
work_keys_str_mv | AT kigurajeit asymptoticpropertiesofsolutionsofnonautonomousordinarydifferentialequations AT chanturiata asymptoticpropertiesofsolutionsofnonautonomousordinarydifferentialequations |