Numerical Approximation of Partial Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Springer Series in Computational Mathematics
23 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with the numerical approximation of partial differential equations. Its scope is to provide a thorough illustration of numerical methods, carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is one of its main features. Many kinds of problems are addressed. A comprehensive theory of Galerkin method and its variants, as well as that of collocation methods, are developed for the spatial discretization. These theories are then specified to two numerical subspace realizations of remarkable interest: the finite element method and the spectral method. From the reviews: "...The book is excellent and is addressed to post-graduate students, research workers in applied sciences as well as to specialists in numerical mathematics solving PDE. Since it is written very clearly, it would be acceptable for undergraduate students in advanced courses of numerical mathematics. Readers will find this book to be a great pleasure."--MATHEMATICAL REVIEWS |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540852681 9783540852674 |
ISSN: | 0179-3632 |
DOI: | 10.1007/978-3-540-85268-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422411 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783540852681 |c Online |9 978-3-540-85268-1 | ||
020 | |a 9783540852674 |c Print |9 978-3-540-85267-4 | ||
024 | 7 | |a 10.1007/978-3-540-85268-1 |2 doi | |
035 | |a (OCoLC)1165448795 | ||
035 | |a (DE-599)BVBBV042422411 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Quarteroni, Alfio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Approximation of Partial Differential Equations |c by Alfio Quarteroni, Alberto Valli |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Mathematics |v 23 |x 0179-3632 | |
500 | |a This book deals with the numerical approximation of partial differential equations. Its scope is to provide a thorough illustration of numerical methods, carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is one of its main features. Many kinds of problems are addressed. A comprehensive theory of Galerkin method and its variants, as well as that of collocation methods, are developed for the spatial discretization. These theories are then specified to two numerical subspace realizations of remarkable interest: the finite element method and the spectral method. From the reviews: "...The book is excellent and is addressed to post-graduate students, research workers in applied sciences as well as to specialists in numerical mathematics solving PDE. Since it is written very clearly, it would be acceptable for undergraduate students in advanced courses of numerical mathematics. Readers will find this book to be a great pleasure."--MATHEMATICAL REVIEWS | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Physics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Mathematical and Computational Physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Methods | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Valli, Alberto |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-85268-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857828 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097151315968 |
---|---|
any_adam_object | |
author | Quarteroni, Alfio |
author_facet | Quarteroni, Alfio |
author_role | aut |
author_sort | Quarteroni, Alfio |
author_variant | a q aq |
building | Verbundindex |
bvnumber | BV042422411 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165448795 (DE-599)BVBBV042422411 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-540-85268-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03483nmm a2200637zcb4500</leader><controlfield tag="001">BV042422411</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540852681</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-85268-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540852674</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-85267-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-85268-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165448795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422411</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Quarteroni, Alfio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Approximation of Partial Differential Equations</subfield><subfield code="c">by Alfio Quarteroni, Alberto Valli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">23</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the numerical approximation of partial differential equations. Its scope is to provide a thorough illustration of numerical methods, carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is one of its main features. Many kinds of problems are addressed. A comprehensive theory of Galerkin method and its variants, as well as that of collocation methods, are developed for the spatial discretization. These theories are then specified to two numerical subspace realizations of remarkable interest: the finite element method and the spectral method. From the reviews: "...The book is excellent and is addressed to post-graduate students, research workers in applied sciences as well as to specialists in numerical mathematics solving PDE. Since it is written very clearly, it would be acceptable for undergraduate students in advanced courses of numerical mathematics. Readers will find this book to be a great pleasure."--MATHEMATICAL REVIEWS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valli, Alberto</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-85268-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857828</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422411 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783540852681 9783540852674 |
issn | 0179-3632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857828 |
oclc_num | 1165448795 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Mathematics |
spelling | Quarteroni, Alfio Verfasser aut Numerical Approximation of Partial Differential Equations by Alfio Quarteroni, Alberto Valli Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Springer Series in Computational Mathematics 23 0179-3632 This book deals with the numerical approximation of partial differential equations. Its scope is to provide a thorough illustration of numerical methods, carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is one of its main features. Many kinds of problems are addressed. A comprehensive theory of Galerkin method and its variants, as well as that of collocation methods, are developed for the spatial discretization. These theories are then specified to two numerical subspace realizations of remarkable interest: the finite element method and the spectral method. From the reviews: "...The book is excellent and is addressed to post-graduate students, research workers in applied sciences as well as to specialists in numerical mathematics solving PDE. Since it is written very clearly, it would be acceptable for undergraduate students in advanced courses of numerical mathematics. Readers will find this book to be a great pleasure."--MATHEMATICAL REVIEWS Mathematics Global analysis (Mathematics) Numerical analysis Mathematical physics Physics Engineering mathematics Analysis Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mathematical and Computational Physics Mathematical Methods in Physics Numerical and Computational Methods Mathematik Mathematische Physik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Approximation (DE-588)4002498-2 s Numerisches Verfahren (DE-588)4128130-5 s Partielle Differentialgleichung (DE-588)4044779-0 s 1\p DE-604 Valli, Alberto Sonstige oth https://doi.org/10.1007/978-3-540-85268-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Quarteroni, Alfio Numerical Approximation of Partial Differential Equations Mathematics Global analysis (Mathematics) Numerical analysis Mathematical physics Physics Engineering mathematics Analysis Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mathematical and Computational Physics Mathematical Methods in Physics Numerical and Computational Methods Mathematik Mathematische Physik Numerisches Verfahren (DE-588)4128130-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4044779-0 (DE-588)4002498-2 |
title | Numerical Approximation of Partial Differential Equations |
title_auth | Numerical Approximation of Partial Differential Equations |
title_exact_search | Numerical Approximation of Partial Differential Equations |
title_full | Numerical Approximation of Partial Differential Equations by Alfio Quarteroni, Alberto Valli |
title_fullStr | Numerical Approximation of Partial Differential Equations by Alfio Quarteroni, Alberto Valli |
title_full_unstemmed | Numerical Approximation of Partial Differential Equations by Alfio Quarteroni, Alberto Valli |
title_short | Numerical Approximation of Partial Differential Equations |
title_sort | numerical approximation of partial differential equations |
topic | Mathematics Global analysis (Mathematics) Numerical analysis Mathematical physics Physics Engineering mathematics Analysis Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mathematical and Computational Physics Mathematical Methods in Physics Numerical and Computational Methods Mathematik Mathematische Physik Numerisches Verfahren (DE-588)4128130-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis Mathematical physics Physics Engineering mathematics Analysis Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Mathematical and Computational Physics Mathematical Methods in Physics Numerical and Computational Methods Mathematik Mathematische Physik Numerisches Verfahren Partielle Differentialgleichung Approximation |
url | https://doi.org/10.1007/978-3-540-85268-1 |
work_keys_str_mv | AT quarteronialfio numericalapproximationofpartialdifferentialequations AT vallialberto numericalapproximationofpartialdifferentialequations |