NanoScience in biomedicine:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
Beijing Tsinghua Univ. Press |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 711 S. Ill., graph. Darst. |
ISBN: | 9783540496601 9787302179054 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035573858 | ||
003 | DE-604 | ||
005 | 20090623 | ||
007 | t | ||
008 | 090619s2009 gw ad|| |||| 00||| eng d | ||
020 | |a 9783540496601 |9 978-3-540-49660-1 | ||
020 | |a 9787302179054 |9 978-7-302-17905-4 | ||
035 | |a (OCoLC)465357601 | ||
035 | |a (DE-599)BVBBV035573858 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T | ||
050 | 0 | |a R857.B53 | |
082 | 0 | |a 610.28 |2 22 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
245 | 1 | 0 | |a NanoScience in biomedicine |c Donglu Shi [Ed.] |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
264 | 1 | |a Beijing |b Tsinghua Univ. Press | |
300 | |a XVI, 711 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Biomedical materials | |
650 | 4 | |a Biomedical materials |x Design | |
650 | 4 | |a Nanomedicine | |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biomedizin |0 (DE-588)4647152-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | 1 | |a Biomedizin |0 (DE-588)4647152-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shi, Donglu |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-49661-8 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017629389&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017629389 |
Datensatz im Suchindex
_version_ | 1804139228678848512 |
---|---|
adam_text | Titel: NanoScience in biomedicine
Autor: Shi, Donglu
Jahr: 2009
Contents
1 Stem Cells and Nanostructured Materials 1
1.1 Introduction 1
1.2 Interaction of Stem Cells with Nanotopographic Substrates 3
1.2.1 Cell Shape and the Cytoskeleton 4
1.2.2 Morphology, Attachment and Proliferation 5
1.2.3 Differentiation 6
1.2.4 Self-Assembling Peptide Nanofibers 8
1.2.5 Summary 8
1.3 Stem Cell Interactions with Nanoparticles 9
1.3.1 Nanoparticles as Contrast Agents 10
1.3.2 Nanoparticles as Vehicles 10
1.3.3 Effect of Internalized Nanoparticles 11
1.3.4 Summary 17
1.4 Conclusions 17
Acknowledgements 18
References 18
2 Biomedical Polymer Nanofibers for Emerging Technology 21
2.1 Introduction 21
2.2 Electrospinning Technology-History, Principle, Parameter 23
2.3 Functionalization of Nanofibers 25
2.3.1 Bulk Modification 25
2.3.2 Surface Modification 27
2.4 Biomedical Applications 29
2.4.1 Tissue-Engineered Scaffolds 29
2.4.2 Wound Dressing 35
2.4.3 Biomedical Devices and Implants 36
2.4.4 Drug Delivery System 37
2.4.5 Other Applications 38
2.5 Concluding Remark 39
Acknowledgement 39
References 40
3 Nanoscale Mechanisms for Assembly of Biomaterials 43
3.1 Introduction 43
v
3.2 Non-Covalent Intermolecular Interaction 45
3.2.1 Electrostatic Interaction 46
3.2.2 Hydrogen Bonding 50
3.2.3 Hydrophobic Interactions 50
3.2.4 Non-Covalent Interactions in Biological Systems 51
3.2.5 Summary 52
3.3 Approaches for Bioinspired Nanoscale Assembly of
Biomaterials 52
3.3.1 Supramolecular Assembly Based Primarily on Ion-Ion
Interactions 53
3.3.2 Assembly of Amphiphilic Biomaterials 55
3.3.3 Biomimetic Supramolecular Assembly Based on
Hydrogen Bonding 57
3.3.4 Biomimetic Assembly Based on Affinity-Based Interactions.... 58
3.3.5 Summary 59
3.4 Development of Biomaterials That Mimic The Natural ECM 59
3.4.1 Introduction 59
3.4.2 Non-Covalent Interactions in Natural Extracellular
Matrices 60
3.4.3 Biomaterials That Mimic ECM Structures and Properties 61
3.5 Concluding remarks 70
Acknowledgements 71
References 71
4 Fabrication and Assembly of Nanomaterials and Nanostructures
for Biological Detections 76
4.1 Introduction 76
4.2 Semiconductor Quantum Dots and Metal Nanoparticles 77
4.2.1 Principles of Semiconductor QDs and Metal Nanoparticle
Biosensors 77
4.2.2 Fabrication of semiconductor QDs and metal nanoparticles
for biosensors 80
4.2.3 Assembly of QD and Metal Nanoparticle Arrays for
Biosensor Applications 81
4.3 Field Effect Sensors Based on Nanowires and Nanotubes 82
4.3.1 Detection Principles of 1 -D Nanowire and Nanotube-Based
Biosensors 82
4.3.2 Fabrication of 1-D Nanowires and Nanotubes 83
4.3.3 Assembly of Ordered Nanowire and Nanotube Arrays 85
4.3.4 Horizontally-Aligned Growth of Single-Walled Nanotubes
(SWNTs) on Substrates 86
4.4 Micro-cantilever sensors 89
4.4.1 Detection Principle of Micro-Cantilever Sensors 89
vi
4.4.2 Fabrication of the array of micro-cantilever sensors 90
4.5 Summary 91
References 92
5 Nanostructured Materials Constructed from Polypeptides 96
5.1 Introduction 96
5.2 Amino Acids and Their Derivatives: Building Blocks for
Nanostructured Materials 97
5.2.1 Canonical Amino Acids 97
5.2.2 Non-canonical Amino Acids 99
5.2.3 Peptidomimetics and Peptide Derivatives 100
5.3 Secondary, Tertiary, and Quaternary Structures in Nanomaterials.... 102
5.3.1 P-Sheet Fibrils 102
5.3.2 a-Helices and Coiled Coils 107
5.4 Materials Properties Arising from Peptide Construction 114
5.4.1 Stimulus-Responsiveness 114
5.4.2 Multifunctionality and Modularity 116
5.5 Technological Applications of Nanoscale Peptide Materials 119
5.5.1 Tissue Engineering and Regenerative Medicine 119
5.5.2 Antimicrobials 121
5.5.3 Controlled Drug Release 121
5.5.4 Nanoscale Electronics 122
5.6 Concluding Remarks 122
References 123
6 Photoluminescent Carbon Nanomaterials: Properties and Potential
Applications 128
6.1 Introduction 128
6.2 Photoluminescent Carbon Particles-Carbon Quantum Dots 130
6.3 Photoluminescent Carbon Nanotubes 135
6.3.1 A Consequence of Functionalization 136
6.3.2 Photoluminescence Features and Properties 137
6.3.3 Defect-Derived vs Band-Gap Emissions 143
6.4 Dots vs Tubes—Luminescence Polarization 144
6.5 Potential Applications 147
Acknowledgement 150
References 150
7 Microwave-assisted Synthesis and Processing of Biomaterials 154
7.1 Introduction 154
7.2 Synthesis of Hydroxyapatite 156
7.2.1 Synthesis in Aqueous Solution 157
7.2.2 Microwave-Hydrothermal Synthesis 162
vii
7.2.3 Synthesis of HA by the Conversion of Precursor Monetite
Prepared in Mixed Solvents 163
7.2.4 PreprationofHAThinFilm 165
7.2.5 Synthesis by Solid State Reaction 166
7.3 Synthesis of P-Tricalcium Phosphate (P-Ca3(PO4)2) 166
7.4 Synthesis of Calcium Carbonate (CaCO3) 167
7.5 Synthesis of Composite Biomaterials 171
7.6 Synthesis of Functionally Graded Bioactive Materials 173
7.7 Microwave Sintering of Biomaterials 174
References 176
8 Characterizing Biointerfaces and Biosurfaces in
Biomaterials Design 178
8.1 Introduction 178
8.2 Characterization of Biointerfaces 181
8.2.1 Surface and Interface Analysis Using Fourier Transform
Infrared Spectroscopy 181
8.2.2 Surface and Interface Analysis Using Atomic Force
Microscopy 183
8.2.3 X-ray Photoelectron Spectroscopy 187
8.2.4 Contact Angle 188
8.2.5 Time-of-Flight Secondary Ions Mass Spectrometry
(ToF-SIMS) 189
8.3 Nano-Structuring Surfaces 190
8.3.1 Nanotopology 191
8.3.2 Nanopatterning Surfaces with Biomolecules 192
8.4 Conclusions 195
References 196
9 Carbon Nanotubes for Electrochemical and Electronic Biosensing
Applications 205
9.1 Introduction 205
9.2 Design Principles of CNT-Based Biosensors 206
9.2.1 CNTs as Modifiers of Electrode Surfaces 206
9.2.2 CNT-Based Composite Electrodes 209
9.2.3 Nanoparticles Decorated CNT-Based Electrodes 210
9.2.4 CNTs as Key Sensing Elements 211
9.2.5 CNT-Based Biosensors with Immobilized Biological
Molecules 212
9.3 Electrochemical Detection of Biomolecules 218
9.3.1 Assessment Criteria of Sensors 224
9.3.2 Electrochemical Biosensors 224
9.4 Field-Effect Transistors Based on SWNTs 236
viii
9.4.1 Protein Recognition 237
9.4.2 DNA Hybridization 239
9.4.3 Enzymatic Study 240
9.4.4 Protein Adsorption 240
9.4.5 Others 241
9.5 Conclusions and Future Prospects 241
Acknowledgement 242
Reference 242
10 Heparin-Conjugated Nanointerfaces for Biomedical Applications.... 247
10.1 Introduction 247
10.2 Heparin-Bound Biodegradable Polymers for
Biocompatible Interfaces 249
10.2.1 Heparin-Conjugated Polylactide (PLA-Hep) 249
10.2.2 Heparin-Conjugated Star-Shaped PLA (sPLA-Hep) 254
10.3 Heparin-Conjugated Polymeric Micelles 260
10.3.1 Synthesis of Tetronic®-PCL-Heparin Conjugate 260
10.3.2 Preparation of bFGF Loaded Polymeric Micelle 262
10.3.3 bFGF Release Study 264
10.3.4 Bioactivity of the Released bFGF 266
10.4 Heparin-Immobilized Small Intestinal Submucosa (SIS) 266
10.4.1 Preparation of Heparin-Immobilized SIS 266
10.4.2 Blood Compatibility Test 267
10.4.3 In Vitro Fibroblast Attachment 268
10.4.4 In Vivo Calcification 269
10.5 Conclusions 270
References 270
11 Inorganic Nanoparticles for Biomedical Applications 272
11.1 Introduction 272
11.2 Unguided Drug Delivery Systems 274
11.2.1 Chemical Synthesis of Ceramic Nanomaterials 275
11.2.2 Functionalization of Ceramic Nanomaterials 276
11.3 Magnetically-Guided Drug Delivery Systems 277
11.3.1 Magnetic Guiding 277
11.3.2 Chemical Synthesis and Properties of Magnetic
Nanostructures 277
11.3.3 Functionalization of Magnetic Nanoparticles 279
11.3.4 Biocompatibility of Magnetic Nanoparticles for
Drug Delivery 280
11.4 Optically-Triggered Drug Delivery Systems 280
11.4.1 Chemical Synthesis and Properties of NIR-Sensitive
Nanoparticles 281
ix
11.4.2 Functionalization of NIR-Sensitive Nanoparticles 282
11.4.3 Biocompatibility of NIR-Sensitive Nanoparticles for
Drug Delivery 282
11.5 Summary 284
References 284
12 Nano Metal Particles for Biomedical Applications 290
12.1 NMPs as Contrast Agents for Bioimaging 290
12.2 Fluorescing NMPs 292
12.3 NMPs with High Plamon Field for Fluorescence Manipulation.... 293
12.3.1 NMPs Used for Fluorescence Quenching 294
12.3.2 NMP for Fluorescence Enhancement in Biosensing 295
12.3.3 NMP for Fluorescence Enhancement in Bioimaging 301
12.4 Magnetic NMPs for Bioseparation 302
12.5 Magnetic NMPs for Biosensing 303
12.6 Magnetic NMPs for Cancer Hyperthermia 305
12.7 MultiFunctional NMPs 308
12.8 Conclusions 310
Acknowledgements 310
References 310
13 Micro- and Nanoscale Technologies in High- Throughput
Biomedical Experimentation 314
13.1 Introduction 315
13.2 Microarray Technologies 316
13.2.1 Evolution of Microarrays 317
13.2.2 Microarray Fabrication and Applications 318
13.2.3 DNA and cDNA Microarrays 321
13.2.4 Protein and Antibody-Based Microarrays 323
13.2.5 Cell-Based Microarrays 325
13.2.6 Other Microarrays and Microarray-Based Diagnostics.... 326
13.3 Micro- and Nanoengineering for Biomedical Experimentation 327
13.4 Microfluidics 329
13.5 Other Micro- and Nanoscale Technologies for Biological and
Chemical Detection 333
13.6 Conclusions 336
Acknowledgements 336
References 337
14 Delivery System of Bioactive Molecules for Regenerative
Medicine 347
14.1 Introduction 347
14.2 Delivery Systems of Bioactive Molecules 348
x
14.2.1 Importance of Bioactive Molecules Release System for the
Regenerative Medicine 348
14.2.2 Scaffold System 353
14.2.3 Injectable Hydrogel System 356
14.2.4 Microspheres System 357
14.2.5 Nanofiber Scaffold System 358
14.3 Differentiation of Adult Stem Cells Using Delivery System of
Bioactive Molecules 359
14.3.1 Osteoegensis of MSC 359
14.3.2 Chondrogenesis of MSCs 360
14.4 Repair of Diaphyseal Long Bone Defect with Calcitriol Released
Delivery Vehicle and MSCs 361
14.5 Future Directions 364
14.6 Conclusion 365
Acknowledgements 365
References 365
15 Modification of Nano-sized Materials for Drug Delivery 3 69
15.1 Introduction 369
15.2 Available Methods to Modify Nano-Sized Materials for Drug
Delivery 371
15.2.1 Surface Modification 371
15.2.2 Shell-Core Modification 374
15.2.3 Bulk Modifications 374
15.3 Applications for Drug Delivery of Modified Nano Sized
Biomaterials 375
15.3.1 Long Circulating Delivery 375
15.3.2 Targeting Delivery 378
15.3.3 New Therapy and Drug Carriers 382
15.4 Conclusions 384
Acknowledgements 384
References 384
16 Polymeric Nano Micelles as a Drug Carrier 388
16.1 Introduction 388
16.2 Self-Assembly and Micellization of Amphiphilic Block
Copolymers 389
16.2.1 Amphiphilic Block Copolymers 389
16.2.2 Micellization of Amphiphilic Block Copolymers 390
16.2.3 Polymeric Micelle Shape 391
16.2.4 Characterization of Polymeric Micelle Size 392
16.2.5 CMC Determination of Polymeric Micelles 393
xi
16.3 Drug Loaded Polymeric Micelles 395
16.3.1 Drug Incorporation in Polymeric Micelles 395
16.3.2 Drug Solubilization Capacity of the Polymeric
Micelles 396
16.3.3 Drug Partitioning in Polymeric Micelles 396
16.3.4 Drug Release from Polymeric Micelles.. 397
16.4 Biological Applications of Polymeric Micelles 398
16.4.1 Biodistribution 398
16.4.2 Accumulation in Target Solid Tumors 399
16.5 Conclusions and Outlook 399
References 400
17 DNANanotechnology 405
17.1 Introduction 405
17.2 Basic Features of DNA 406
17.3 Self-Assembly of DNA Aanostructures 407
17.3.1 Basic Concepts 407
17.3.2 Two-Dimensional DNAArray Structures 408
17.3.3 Three-Dimensional DNANanostructures 413
17.4 Self-Assembly Properties of DNANanostructures 414
17.4.1 DNA Templated Self-Assembly of
Biological Molecules 415
17.4.2 DNA-Templated Self-Assembly of
Nanoscale Devices 419
17.5 Application of DNA-Based Nanotechnology 419
17.6 Conclusions and Outlook 423
References 424
18 Nanoscale Bioactive Surfaces and Endosseous Implantology 428
18.1 Introduction 428
18.2 Peri-implant Endosseous Healing and Osseointegration 429
18.2.1 Peri-Implant Endosseous Healing 429
18.2.2 Effect of Implant Surface Characteristics on
Osseointegration 431
18.2.3 Potential Advantage of Nanoscale Surfaces 432
18.3 Nanoscale Bioactive Surfaces 434
18.3.1 Nanoscale Textured Surface 434
18.3.2 Nanoscale Biological Molecules 439
18.3.3 Nanoscale Bioactive Calcium Phosphate Coating 440
18.4 Summary 444
Acknowledgements 444
References 444
xii
19 Carbon Nanotube Smart Materials for Biology and Medicine 451
19.1 Introduction 451
19.2 Carbon Nanotube Array Synthesis 453
19.2.1 Array Synthesis 453
19.2.2 Synthesis of Carbon Nanotube Towers 454
19.2.3 CNT Array Nanoskin and Nanostrands 455
19.3 Properties of Carbon Nanotube Arrays 457
19.3.1 Hydrophobic Property 457
19.3.2 Electrowetting Property 458
19.3.3 Capillarity Property 459
19.3.4 Nanotube Array Actuator 460
19.4 Potential Applications of Nanotube Arrays In Biology
and Medicine 463
19.4.1 Electronic Biosensors 464
19.4.2 Nanotube Electrodes for Biovoltage and
Chemical Sensing 467
19.4.3 Carbon Nanotube Sensor Film for Environmental
Monitoring 468
19.4.4 Nanocomposite Materials for Biological
Applications 469
19.4.5 In-Body Biosensors: Optimistic Hopes and Wildest
Outlook 472
19.4.6 Investigating Neuronal Activity and Function Using
Nanotubes 475
19.5 Conclusions 480
Acknowledgement 480
References 480
20 Microscopic Modeling of Phonon Modes in Semiconductor
Nanocrystals 485
20.1 Introduction 485
20.2 Theory 488
20.2.1 The Valence Force Field Model 488
20.2.2 Application of Group Theory to the Study of
Nanocrystals 490
20.2.3 The Bond Charge Approximation 496
20.2.4 Lamb Modes 498
20.3 Results and Discussion 501
20.3.1 Phonon Density of States for Nanocrystals 501
20.3.2 Raman Intensities 504
20.3.3 Size Effects on the Highest Phonon
Frequencies of Si 505
xiii
20.3.4 Size Effects on the Lowest Frequencies
Phonon for Si 508
20.3.5 Folding of Acoustic Phonons 509
20.3.6 Size Effects on Si Raman Peaks 510
20.3.7 Size Effects on Mode Mixing 511
20.3.8 Size Effects on the Intensities of Ge Raman Peaks 511
20.3.9 Size Effects on the Highest Raman Frequencies for
Ge with Fixed or Free Surfaces 513
20.3.10 Existence of Interface Modes for Nanocrystals with
Fixed Surfaces 515
20.4 Correspondence between the Microscopic and Macroscopic
Active Raman Modes 516
20.4.1 Projection of the Lamb Modes 516
20.4.2 Group Theory Prediction of the Raman Intensities of
the Lamb Modes 518
20.4.3 Identifying Lamb Modes within the VFFM-Determined
Modes 518
20.4.4 The Radial Distribution Function of Ge Nanocrystals 523
20.4.5 Raman Intensities for Ge NC and Lamb modes 523
20.5 Conclusions 527
Acknowledgements 528
Appendices 528
A.I The Irreducible Matrices of the Td Group Used in Our
Calculations are as Follows 528
A.2 Displacements for the /= 1 Spheroidal Lamb Modes 529
A.3 Displacements for /= 2 Spheroidal Lamb Modes 530
A.4 Displacements for the /= 2 Torsional Lamb Modes 532
A.5 Displacements for the /= 3 Torsional Lamb Modes 533
A.6 Displacements for the /= 4 Torsional Lamb Modes 534
References 535
21 Fracture Processes in Advanced Nanocrystalline
and Nanocomposite Materials 537
21.1 Introduction 537
21.2 Specific Structural Features and Plastic Deformation Behavior
of Nanomaterials 538
21.3 Brittle and Ductile Fracture Processes in Nanomaterials 543
21.4 Nucleation of Nanocracks at Grain Boundaries and Their
Triple Junctions 547
21.5 Intergranular Brittle Fracture Through Nucleation and
Convergence of Nanocracks in Nanomaterials 555
21.6 Crack Growth in Nanomaterials. Toughening Mechanisms 558
21.7 Concluding Remarks 563
xiv
Acknowledgements 564
References 564
22 Synthesis, Properties and Application of Conducting PPY
Nanoparticles 568
22.1 Introduction 569
22.1.1 Synthesis of PPY Nanoparticles 569
22.1.2 Properties and Application of PPY Nanoparticles 573
22.2 Experimental 580
22.2.1 Materials 580
22.2.2 Polymerization 580
22.2.3 Characterization 580
22.3 Results and Discussion 581
22.3.1 The Effect of Polymerization Temperature on the
Yield of the Nanoparticles 581
22.3.2 Size and Its Distribution of the PY/SD Copolymer
Nanoparticles 582
22.3.3 Morphology of the PY/SD Copolymer Nanoparticles 583
22.3.4 Mechanism of the Formation and Self-Stabilization of
the Nanoparticles 584
22.3.5 Bulk Electrical Conductivity 584
22.4 Conclusions 584
Acknowledgements 585
.References 585
23 Field Emission of Carbon Nanotubes 588
23.1 Introduction 588
23.2 Field Emission 589
23.3 Carbon Nanotube Growth Technologies 592
23.4 Characterization of Field Emission From CNTs 599
23.4.1 Effect of Structure on Field Emission 600
23.4.2 Effect of Length and Space 601
23.4.3 Method of field emission enhancement 606
23 A A Gated Field-Emission Arrays with Carbon
Nanotubes 610
23.5 Summary 614
Acknowledgement 614
References 614
24 Flexible Dye-Sensitized Nano-Porous Films Soar Cells 618
24.1 Introduction 618
24.2 Flexible DSSCs and Low Temperature Preparation 622
xv
24.3 Electron Transport and Back Reaction at the TiC^/Electrolyte
Interface 629
24.3.1 Factors that Determine Efficiency 629
24.3.2 Techniques for Measuring Electron Transport and
Back Reaction 631
24.3.3 Results Obtained with Low-Temperature Films 634
24.3.4 Recent Developments and Outlook 638
24.4 Interfacial Electron Transfer, Charge Separation and
Recombination 639
24.4.1 Heterogeneous Electron Transfer 641
24.4.2 Charge Separation at the Film/Dye Interface 644
24.4.3 Charge Recombination at the Film/Redox/Dye
Interface 645
24.5 Summary 646
References 646
25 Magnetic Nanofluids: Synthesis and Structure 650
25.1 Introduction 651
25.1.1 Ferrofluids—Magnetically Controllable Nanofluids 651
25.1.2 Early History of Magnetic Fluids (A Short Review) 651
25.1.3 Composition, Structure and Macroscopic Behavior 653
25.2 Synthesis of Magnetic Nanofluids 656
25.2.1 Generalities 656
25.2.2 Synthesis of Nanosized Magnetic Particles 656
25.2.3 Magnetic Nanofluids with Organic Carriers 661
25.2.4 Water Based Magnetic Nanofluids 666
25.2.5 Long-Term Colloidal Stability of Magnetic
Nanofluids 673
25.2.6 Dilution Stability 679
25.3 Structure Investigations 684
25.3.1 Particle Structure 684
25.3.2 Interaction 699
Acknowledgements 703
References 704
xvi
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035573858 |
callnumber-first | R - Medicine |
callnumber-label | R857 |
callnumber-raw | R857.B53 |
callnumber-search | R857.B53 |
callnumber-sort | R 3857 B53 |
callnumber-subject | R - General Medicine |
classification_rvk | VE 9850 |
ctrlnum | (OCoLC)465357601 (DE-599)BVBBV035573858 |
dewey-full | 610.28 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.28 |
dewey-search | 610.28 |
dewey-sort | 3610.28 |
dewey-tens | 610 - Medicine and health |
discipline | Chemie / Pharmazie Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01676nam a2200457 c 4500</leader><controlfield tag="001">BV035573858</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090623 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090619s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540496601</subfield><subfield code="9">978-3-540-49660-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9787302179054</subfield><subfield code="9">978-7-302-17905-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)465357601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035573858</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R857.B53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.28</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NanoScience in biomedicine</subfield><subfield code="c">Donglu Shi [Ed.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">Tsinghua Univ. Press</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 711 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical materials</subfield><subfield code="x">Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanomedicine</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomedizin</subfield><subfield code="0">(DE-588)4647152-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biomedizin</subfield><subfield code="0">(DE-588)4647152-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Donglu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-49661-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017629389&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017629389</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035573858 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:40:45Z |
institution | BVB |
isbn | 9783540496601 9787302179054 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017629389 |
oclc_num | 465357601 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | XVI, 711 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer Tsinghua Univ. Press |
record_format | marc |
spelling | NanoScience in biomedicine Donglu Shi [Ed.] Berlin [u.a.] Springer 2009 Beijing Tsinghua Univ. Press XVI, 711 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Biomedical materials Biomedical materials Design Nanomedicine Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Biomedizin (DE-588)4647152-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanotechnologie (DE-588)4327470-5 s Biomedizin (DE-588)4647152-2 s DE-604 Shi, Donglu Sonstige oth Erscheint auch als Online-Ausgabe 978-3-540-49661-8 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017629389&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | NanoScience in biomedicine Biomedical materials Biomedical materials Design Nanomedicine Nanotechnologie (DE-588)4327470-5 gnd Biomedizin (DE-588)4647152-2 gnd |
subject_GND | (DE-588)4327470-5 (DE-588)4647152-2 (DE-588)4143413-4 |
title | NanoScience in biomedicine |
title_auth | NanoScience in biomedicine |
title_exact_search | NanoScience in biomedicine |
title_full | NanoScience in biomedicine Donglu Shi [Ed.] |
title_fullStr | NanoScience in biomedicine Donglu Shi [Ed.] |
title_full_unstemmed | NanoScience in biomedicine Donglu Shi [Ed.] |
title_short | NanoScience in biomedicine |
title_sort | nanoscience in biomedicine |
topic | Biomedical materials Biomedical materials Design Nanomedicine Nanotechnologie (DE-588)4327470-5 gnd Biomedizin (DE-588)4647152-2 gnd |
topic_facet | Biomedical materials Biomedical materials Design Nanomedicine Nanotechnologie Biomedizin Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017629389&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shidonglu nanoscienceinbiomedicine |