The predator prey model: do we live in a Volterra world?
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Wien u. a.
Springer
1986
|
Schlagworte: | |
Beschreibung: | XI, 251 S. graph. Darst. |
ISBN: | 3211818480 0387818480 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV006030186 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 921030s1986 d||| |||| 00||| eng d | ||
020 | |a 3211818480 |9 3-211-81848-0 | ||
020 | |a 0387818480 |9 0-387-81848-0 | ||
035 | |a (OCoLC)11573751 | ||
035 | |a (DE-599)BVBBV006030186 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a QA401 | |
082 | 0 | |a 511/.8 |2 19 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Peschel, Manfred |d 1932-2002 |e Verfasser |0 (DE-588)124686923 |4 aut | |
245 | 1 | 0 | |a The predator prey model |b do we live in a Volterra world? |c Manfred Peschel ; Werner Mende* |
264 | 1 | |a Wien u. a. |b Springer |c 1986 | |
300 | |a XI, 251 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Analyse numérique | |
650 | 4 | |a Biométrie | |
650 | 7 | |a Evolutie |2 gtt | |
650 | 4 | |a Evolution | |
650 | 4 | |a Expérience numérique | |
650 | 4 | |a Lutte pour la vie | |
650 | 4 | |a Modèles mathématiques | |
650 | 7 | |a Modèles mathématiques |2 ram | |
650 | 7 | |a Probabilidade (Estatistica) |2 larpcal | |
650 | 4 | |a Prédation (Biologie) - Modèles mathématiques | |
650 | 7 | |a Prédation (biologie) - Modèles mathématiques |2 ram | |
650 | 7 | |a Systeemtheorie |2 gtt | |
650 | 4 | |a Théorème Lotka | |
650 | 4 | |a Théorème Volterra | |
650 | 4 | |a Volterra, Équations de | |
650 | 7 | |a Volterra, Équations de |2 ram | |
650 | 7 | |a Wiskundige modellen |2 gtt | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Predation (Biology) |x Mathematical models | |
650 | 4 | |a Volterra equations | |
650 | 0 | 7 | |a Wachstum |0 (DE-588)4064115-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wirtschaftswachstum |0 (DE-588)4066527-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wachstum |0 (DE-588)4064115-6 |D s |
689 | 0 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wirtschaftswachstum |0 (DE-588)4066527-6 |D s |
689 | 1 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mende, Werner |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003795666 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804120241954881536 |
---|---|
any_adam_object | |
author | Peschel, Manfred 1932-2002 Mende, Werner |
author_GND | (DE-588)124686923 |
author_facet | Peschel, Manfred 1932-2002 Mende, Werner |
author_role | aut aut |
author_sort | Peschel, Manfred 1932-2002 |
author_variant | m p mp w m wm |
building | Verbundindex |
bvnumber | BV006030186 |
callnumber-first | Q - Science |
callnumber-label | QA401 |
callnumber-raw | QA401 |
callnumber-search | QA401 |
callnumber-sort | QA 3401 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)11573751 (DE-599)BVBBV006030186 |
dewey-full | 511/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.8 |
dewey-search | 511/.8 |
dewey-sort | 3511 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02376nam a2200685 c 4500</leader><controlfield tag="001">BV006030186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921030s1986 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3211818480</subfield><subfield code="9">3-211-81848-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387818480</subfield><subfield code="9">0-387-81848-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)11573751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006030186</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA401</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peschel, Manfred</subfield><subfield code="d">1932-2002</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124686923</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The predator prey model</subfield><subfield code="b">do we live in a Volterra world?</subfield><subfield code="c">Manfred Peschel ; Werner Mende*</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien u. a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 251 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biométrie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expérience numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lutte pour la vie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilidade (Estatistica)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prédation (Biologie) - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prédation (biologie) - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systeemtheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorème Lotka</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorème Volterra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra, Équations de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Volterra, Équations de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predation (Biology)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wachstum</subfield><subfield code="0">(DE-588)4064115-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftswachstum</subfield><subfield code="0">(DE-588)4066527-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wachstum</subfield><subfield code="0">(DE-588)4064115-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wirtschaftswachstum</subfield><subfield code="0">(DE-588)4066527-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mende, Werner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003795666</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV006030186 |
illustrated | Illustrated |
indexdate | 2024-07-09T16:38:58Z |
institution | BVB |
isbn | 3211818480 0387818480 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003795666 |
oclc_num | 11573751 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XI, 251 S. graph. Darst. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer |
record_format | marc |
spelling | Peschel, Manfred 1932-2002 Verfasser (DE-588)124686923 aut The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* Wien u. a. Springer 1986 XI, 251 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Wachstum (DE-588)4064115-6 gnd rswk-swf Wirtschaftswachstum (DE-588)4066527-6 gnd rswk-swf Volterra-Gleichungen (DE-588)4137459-9 gnd rswk-swf Wachstum (DE-588)4064115-6 s Volterra-Gleichungen (DE-588)4137459-9 s DE-604 Wirtschaftswachstum (DE-588)4066527-6 s 1\p DE-604 Mende, Werner Verfasser aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Peschel, Manfred 1932-2002 Mende, Werner The predator prey model do we live in a Volterra world? Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Wachstum (DE-588)4064115-6 gnd Wirtschaftswachstum (DE-588)4066527-6 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd |
subject_GND | (DE-588)4064115-6 (DE-588)4066527-6 (DE-588)4137459-9 |
title | The predator prey model do we live in a Volterra world? |
title_auth | The predator prey model do we live in a Volterra world? |
title_exact_search | The predator prey model do we live in a Volterra world? |
title_full | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_fullStr | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_full_unstemmed | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_short | The predator prey model |
title_sort | the predator prey model do we live in a volterra world |
title_sub | do we live in a Volterra world? |
topic | Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Wachstum (DE-588)4064115-6 gnd Wirtschaftswachstum (DE-588)4066527-6 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd |
topic_facet | Analyse numérique Biométrie Evolutie Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Probabilidade (Estatistica) Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques Systeemtheorie Théorème Lotka Théorème Volterra Volterra, Équations de Wiskundige modellen Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Wachstum Wirtschaftswachstum Volterra-Gleichungen |
work_keys_str_mv | AT peschelmanfred thepredatorpreymodeldoweliveinavolterraworld AT mendewerner thepredatorpreymodeldoweliveinavolterraworld |