The predator prey model: do we live in a Volterra world?
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | English |
Published: |
Wien u. a.
Springer
1986
|
Subjects: | |
Physical Description: | XI, 251 S. graph. Darst. |
ISBN: | 3211818480 0387818480 |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV006030186 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 921030s1986 xx d||| |||| 00||| eng d | ||
020 | |a 3211818480 |9 3-211-81848-0 | ||
020 | |a 0387818480 |9 0-387-81848-0 | ||
035 | |a (OCoLC)11573751 | ||
035 | |a (DE-599)BVBBV006030186 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a QA401 | |
082 | 0 | |a 511/.8 |2 19 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Peschel, Manfred |d 1932-2002 |e Verfasser |0 (DE-588)124686923 |4 aut | |
245 | 1 | 0 | |a The predator prey model |b do we live in a Volterra world? |c Manfred Peschel ; Werner Mende* |
264 | 1 | |a Wien u. a. |b Springer |c 1986 | |
300 | |a XI, 251 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Analyse numérique | |
650 | 4 | |a Biométrie | |
650 | 7 | |a Evolutie |2 gtt | |
650 | 4 | |a Evolution | |
650 | 4 | |a Expérience numérique | |
650 | 4 | |a Lutte pour la vie | |
650 | 4 | |a Modèles mathématiques | |
650 | 7 | |a Modèles mathématiques |2 ram | |
650 | 7 | |a Probabilidade (Estatistica) |2 larpcal | |
650 | 4 | |a Prédation (Biologie) - Modèles mathématiques | |
650 | 7 | |a Prédation (biologie) - Modèles mathématiques |2 ram | |
650 | 7 | |a Systeemtheorie |2 gtt | |
650 | 4 | |a Théorème Lotka | |
650 | 4 | |a Théorème Volterra | |
650 | 4 | |a Volterra, Équations de | |
650 | 7 | |a Volterra, Équations de |2 ram | |
650 | 7 | |a Wiskundige modellen |2 gtt | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Predation (Biology) |x Mathematical models | |
650 | 4 | |a Volterra equations | |
650 | 0 | 7 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wirtschaftswachstum |0 (DE-588)4066527-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wachstum |0 (DE-588)4064115-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wachstum |0 (DE-588)4064115-6 |D s |
689 | 0 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wirtschaftswachstum |0 (DE-588)4066527-6 |D s |
689 | 1 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mende, Werner |e Verfasser |4 aut | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-003795666 |
Record in the Search Index
_version_ | 1833803425706409984 |
---|---|
adam_text | |
any_adam_object | |
author | Peschel, Manfred 1932-2002 Mende, Werner |
author_GND | (DE-588)124686923 |
author_facet | Peschel, Manfred 1932-2002 Mende, Werner |
author_role | aut aut |
author_sort | Peschel, Manfred 1932-2002 |
author_variant | m p mp w m wm |
building | Verbundindex |
bvnumber | BV006030186 |
callnumber-first | Q - Science |
callnumber-label | QA401 |
callnumber-raw | QA401 |
callnumber-search | QA401 |
callnumber-sort | QA 3401 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)11573751 (DE-599)BVBBV006030186 |
dewey-full | 511/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.8 |
dewey-search | 511/.8 |
dewey-sort | 3511 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV006030186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">921030s1986 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3211818480</subfield><subfield code="9">3-211-81848-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387818480</subfield><subfield code="9">0-387-81848-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)11573751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006030186</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA401</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peschel, Manfred</subfield><subfield code="d">1932-2002</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124686923</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The predator prey model</subfield><subfield code="b">do we live in a Volterra world?</subfield><subfield code="c">Manfred Peschel ; Werner Mende*</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien u. a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 251 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biométrie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expérience numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lutte pour la vie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilidade (Estatistica)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prédation (Biologie) - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prédation (biologie) - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systeemtheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorème Lotka</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorème Volterra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra, Équations de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Volterra, Équations de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predation (Biology)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftswachstum</subfield><subfield code="0">(DE-588)4066527-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wachstum</subfield><subfield code="0">(DE-588)4064115-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wachstum</subfield><subfield code="0">(DE-588)4064115-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wirtschaftswachstum</subfield><subfield code="0">(DE-588)4066527-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mende, Werner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003795666</subfield></datafield></record></collection> |
id | DE-604.BV006030186 |
illustrated | Illustrated |
indexdate | 2025-06-02T08:00:28Z |
institution | BVB |
isbn | 3211818480 0387818480 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003795666 |
oclc_num | 11573751 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XI, 251 S. graph. Darst. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer |
record_format | marc |
spelling | Peschel, Manfred 1932-2002 Verfasser (DE-588)124686923 aut The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* Wien u. a. Springer 1986 XI, 251 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Volterra-Gleichungen (DE-588)4137459-9 gnd rswk-swf Wirtschaftswachstum (DE-588)4066527-6 gnd rswk-swf Wachstum (DE-588)4064115-6 gnd rswk-swf Wachstum (DE-588)4064115-6 s Volterra-Gleichungen (DE-588)4137459-9 s DE-604 Wirtschaftswachstum (DE-588)4066527-6 s 1\p DE-604 Mende, Werner Verfasser aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Peschel, Manfred 1932-2002 Mende, Werner The predator prey model do we live in a Volterra world? Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Volterra-Gleichungen (DE-588)4137459-9 gnd Wirtschaftswachstum (DE-588)4066527-6 gnd Wachstum (DE-588)4064115-6 gnd |
subject_GND | (DE-588)4137459-9 (DE-588)4066527-6 (DE-588)4064115-6 |
title | The predator prey model do we live in a Volterra world? |
title_auth | The predator prey model do we live in a Volterra world? |
title_exact_search | The predator prey model do we live in a Volterra world? |
title_full | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_fullStr | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_full_unstemmed | The predator prey model do we live in a Volterra world? Manfred Peschel ; Werner Mende* |
title_short | The predator prey model |
title_sort | the predator prey model do we live in a volterra world |
title_sub | do we live in a Volterra world? |
topic | Analyse numérique Biométrie Evolutie gtt Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Modèles mathématiques ram Probabilidade (Estatistica) larpcal Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques ram Systeemtheorie gtt Théorème Lotka Théorème Volterra Volterra, Équations de Volterra, Équations de ram Wiskundige modellen gtt Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Volterra-Gleichungen (DE-588)4137459-9 gnd Wirtschaftswachstum (DE-588)4066527-6 gnd Wachstum (DE-588)4064115-6 gnd |
topic_facet | Analyse numérique Biométrie Evolutie Evolution Expérience numérique Lutte pour la vie Modèles mathématiques Probabilidade (Estatistica) Prédation (Biologie) - Modèles mathématiques Prédation (biologie) - Modèles mathématiques Systeemtheorie Théorème Lotka Théorème Volterra Volterra, Équations de Wiskundige modellen Mathematisches Modell Mathematical models Predation (Biology) Mathematical models Volterra equations Volterra-Gleichungen Wirtschaftswachstum Wachstum |
work_keys_str_mv | AT peschelmanfred thepredatorpreymodeldoweliveinavolterraworld AT mendewerner thepredatorpreymodeldoweliveinavolterraworld |