Handbook of research on machine learning enabled IoT for smart applications across industries:
The handbook of research on machine learning-enabled IoT for smart applications across industries highlights the importance of ML for IoT's success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :
IGI Global,
2023.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The handbook of research on machine learning-enabled IoT for smart applications across industries highlights the importance of ML for IoT's success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. |
Beschreibung: | 30 PDFs (542 pages) Also available in print. |
Format: | Mode of access: World Wide Web. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781668487877 |
Zugangseinschränkungen: | Restricted to subscribers or individual electronic text purchasers. |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-98-IGB-00315776 | ||
003 | IGIG | ||
005 | 20230707134413.0 | ||
006 | m eo d | ||
007 | cr bn||||m|||a | ||
008 | 230707s2023 pau fob 001 0 eng d | ||
020 | |a 9781668487877 |q PDF | ||
020 | |z 1668487853 |q hardcover | ||
020 | |z 9781668487853 |q print | ||
024 | 7 | |a 10.4018/978-1-6684-8785-3 |2 doi | |
035 | |a (CaBNVSL)slc00004589 | ||
035 | |a (OCoLC)1389870244 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a TK5105.8857 |b .H36 2023e | |
082 | 7 | |a 006.3 |2 23 | |
245 | 0 | 0 | |a Handbook of research on machine learning enabled IoT for smart applications across industries |c edited by Neha Goel, Ravindra Kumar Yadav. |
246 | 3 | |a Handbook of research on machine learning enabled Internet of things for smart applications across industries | |
264 | 1 | |a Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : |b IGI Global, |c 2023. | |
300 | |a 30 PDFs (542 pages) | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Chapter 1. Challenges in various applications using IoT -- Chapter 2. Pattern recognition by IoT systems of machine learning -- Chapter 3. Institutional pressures on the oil and gas industry: the role of machine learning -- Chapter 4. Generative adversarial networks: a game changer GAN for machine learning and IoT applications -- Chapter 5. Machine learning-enabled Internet of things solution for smart agriculture operations -- Chapter 6. An investigative study on Internet of things in healthcare -- Chapter 7. Machine learning-based threat identification systems: machine learning-based IDS using decision tree -- Chapter 8. Future outlier detection algorithm for smarter industry application using ML and AI: explainable AI and ML for smart industry evolution using ML/AI algorithms and implementations -- Chapter 9. Edge computing: optimizing performance and enhancing user experience -- Chapter 10. The role of wireless body area networks in smart healthcare system in the context of big data and AI -- Chapter 11. Significance of fog computing to machine learning-enabled IoT for smart applications across industries -- Chapter 12. New cloud computing-based strategy for coordinating multi-robot systems -- Chapter 13. Impact of uavs in agriculture -- Chapter 14. A survey on diagnosis of hazardous gas emission using AI techniques -- Chapter 15. IoVST: internet of vehicles and smart traffic architecture, applications, and challenges -- Chapter 16. Smart cities: redefining urban life through IoT -- Chapter 17. IoT and machine learning on smart home-based data and a perspective on fog computing implementation -- Chapter 18. Activity recognition and IoT-based analysis using time series and CNN -- Chapter 19. A comprehensive review of IoT reliability and its measures: perspective analysis -- Chapter 20. Sustainable IoT for smart environmental control -- Chapter 21. Evolutionized industry with the Internet of things -- Chapter 22. Integration of WSN and IoT: wireless networks architecture and protocols a way to smart agriculture -- Chapter 23. The current generation 5G and evolution of 6G to 7G technologies: the future IoT. | |
506 | |a Restricted to subscribers or individual electronic text purchasers. | ||
520 | |a The handbook of research on machine learning-enabled IoT for smart applications across industries highlights the importance of ML for IoT's success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. | ||
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
588 | |a Description based on title screen (IGI Global, viewed 07/07/2023). | ||
650 | 0 | |a Industrial management |x Data processing. | |
650 | 0 | |a Internet of things. | |
650 | 0 | |a Machine learning. | |
700 | 1 | |a Goel, Neha |d 1983- |e editor. | |
700 | 1 | |a Yadav, Ravindra Kumar |d 1973- |e editor. | |
710 | 2 | |a IGI Global, |e publisher. | |
776 | 0 | 8 | |i Print version: |z 1668487853 |z 9781668487853 |
856 | 4 | 0 | |l FWS01 |p ZDB-98-IGB |q FWS_PDA_IGB |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-8785-3 |3 Volltext |
912 | |a ZDB-98-IGB | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-98-IGB-00315776 |
---|---|
_version_ | 1816797087208046593 |
adam_text | |
any_adam_object | |
author2 | Goel, Neha 1983- Yadav, Ravindra Kumar 1973- |
author2_role | edt edt |
author2_variant | n g ng r k y rk rky |
author_facet | Goel, Neha 1983- Yadav, Ravindra Kumar 1973- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5105 |
callnumber-raw | TK5105.8857 .H36 2023e |
callnumber-search | TK5105.8857 .H36 2023e |
callnumber-sort | TK 45105.8857 H36 42023E |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-98-IGB |
contents | Chapter 1. Challenges in various applications using IoT -- Chapter 2. Pattern recognition by IoT systems of machine learning -- Chapter 3. Institutional pressures on the oil and gas industry: the role of machine learning -- Chapter 4. Generative adversarial networks: a game changer GAN for machine learning and IoT applications -- Chapter 5. Machine learning-enabled Internet of things solution for smart agriculture operations -- Chapter 6. An investigative study on Internet of things in healthcare -- Chapter 7. Machine learning-based threat identification systems: machine learning-based IDS using decision tree -- Chapter 8. Future outlier detection algorithm for smarter industry application using ML and AI: explainable AI and ML for smart industry evolution using ML/AI algorithms and implementations -- Chapter 9. Edge computing: optimizing performance and enhancing user experience -- Chapter 10. The role of wireless body area networks in smart healthcare system in the context of big data and AI -- Chapter 11. Significance of fog computing to machine learning-enabled IoT for smart applications across industries -- Chapter 12. New cloud computing-based strategy for coordinating multi-robot systems -- Chapter 13. Impact of uavs in agriculture -- Chapter 14. A survey on diagnosis of hazardous gas emission using AI techniques -- Chapter 15. IoVST: internet of vehicles and smart traffic architecture, applications, and challenges -- Chapter 16. Smart cities: redefining urban life through IoT -- Chapter 17. IoT and machine learning on smart home-based data and a perspective on fog computing implementation -- Chapter 18. Activity recognition and IoT-based analysis using time series and CNN -- Chapter 19. A comprehensive review of IoT reliability and its measures: perspective analysis -- Chapter 20. Sustainable IoT for smart environmental control -- Chapter 21. Evolutionized industry with the Internet of things -- Chapter 22. Integration of WSN and IoT: wireless networks architecture and protocols a way to smart agriculture -- Chapter 23. The current generation 5G and evolution of 6G to 7G technologies: the future IoT. |
ctrlnum | (CaBNVSL)slc00004589 (OCoLC)1389870244 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04440nam a2200469 i 4500</leader><controlfield tag="001">ZDB-98-IGB-00315776</controlfield><controlfield tag="003">IGIG</controlfield><controlfield tag="005">20230707134413.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr bn||||m|||a</controlfield><controlfield tag="008">230707s2023 pau fob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781668487877</subfield><subfield code="q">PDF</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1668487853</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781668487853</subfield><subfield code="q">print</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-6684-8785-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaBNVSL)slc00004589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1389870244</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNVSL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">CaBNVSL</subfield><subfield code="d">CaBNVSL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5105.8857</subfield><subfield code="b">.H36 2023e</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Handbook of research on machine learning enabled IoT for smart applications across industries </subfield><subfield code="c">edited by Neha Goel, Ravindra Kumar Yadav.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Handbook of research on machine learning enabled Internet of things for smart applications across industries </subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :</subfield><subfield code="b">IGI Global,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">30 PDFs (542 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">electronic</subfield><subfield code="2">isbdmedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1. Challenges in various applications using IoT -- Chapter 2. Pattern recognition by IoT systems of machine learning -- Chapter 3. Institutional pressures on the oil and gas industry: the role of machine learning -- Chapter 4. Generative adversarial networks: a game changer GAN for machine learning and IoT applications -- Chapter 5. Machine learning-enabled Internet of things solution for smart agriculture operations -- Chapter 6. An investigative study on Internet of things in healthcare -- Chapter 7. Machine learning-based threat identification systems: machine learning-based IDS using decision tree -- Chapter 8. Future outlier detection algorithm for smarter industry application using ML and AI: explainable AI and ML for smart industry evolution using ML/AI algorithms and implementations -- Chapter 9. Edge computing: optimizing performance and enhancing user experience -- Chapter 10. The role of wireless body area networks in smart healthcare system in the context of big data and AI -- Chapter 11. Significance of fog computing to machine learning-enabled IoT for smart applications across industries -- Chapter 12. New cloud computing-based strategy for coordinating multi-robot systems -- Chapter 13. Impact of uavs in agriculture -- Chapter 14. A survey on diagnosis of hazardous gas emission using AI techniques -- Chapter 15. IoVST: internet of vehicles and smart traffic architecture, applications, and challenges -- Chapter 16. Smart cities: redefining urban life through IoT -- Chapter 17. IoT and machine learning on smart home-based data and a perspective on fog computing implementation -- Chapter 18. Activity recognition and IoT-based analysis using time series and CNN -- Chapter 19. A comprehensive review of IoT reliability and its measures: perspective analysis -- Chapter 20. Sustainable IoT for smart environmental control -- Chapter 21. Evolutionized industry with the Internet of things -- Chapter 22. Integration of WSN and IoT: wireless networks architecture and protocols a way to smart agriculture -- Chapter 23. The current generation 5G and evolution of 6G to 7G technologies: the future IoT.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Restricted to subscribers or individual electronic text purchasers.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The handbook of research on machine learning-enabled IoT for smart applications across industries highlights the importance of ML for IoT's success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. </subfield></datafield><datafield tag="530" ind1=" " ind2=" "><subfield code="a">Also available in print.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on title screen (IGI Global, viewed 07/07/2023).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Industrial management</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet of things.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goel, Neha</subfield><subfield code="d">1983-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yadav, Ravindra Kumar</subfield><subfield code="d">1973-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global,</subfield><subfield code="e">publisher.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1668487853</subfield><subfield code="z">9781668487853</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FWS_PDA_IGB</subfield><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-8785-3</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-98-IGB-00315776 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:52:00Z |
institution | BVB |
isbn | 9781668487877 |
language | English |
oclc_num | 1389870244 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 30 PDFs (542 pages) Also available in print. |
psigel | ZDB-98-IGB |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IGI Global, |
record_format | marc |
spelling | Handbook of research on machine learning enabled IoT for smart applications across industries edited by Neha Goel, Ravindra Kumar Yadav. Handbook of research on machine learning enabled Internet of things for smart applications across industries Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : IGI Global, 2023. 30 PDFs (542 pages) text rdacontent electronic isbdmedia online resource rdacarrier Includes bibliographical references and index. Chapter 1. Challenges in various applications using IoT -- Chapter 2. Pattern recognition by IoT systems of machine learning -- Chapter 3. Institutional pressures on the oil and gas industry: the role of machine learning -- Chapter 4. Generative adversarial networks: a game changer GAN for machine learning and IoT applications -- Chapter 5. Machine learning-enabled Internet of things solution for smart agriculture operations -- Chapter 6. An investigative study on Internet of things in healthcare -- Chapter 7. Machine learning-based threat identification systems: machine learning-based IDS using decision tree -- Chapter 8. Future outlier detection algorithm for smarter industry application using ML and AI: explainable AI and ML for smart industry evolution using ML/AI algorithms and implementations -- Chapter 9. Edge computing: optimizing performance and enhancing user experience -- Chapter 10. The role of wireless body area networks in smart healthcare system in the context of big data and AI -- Chapter 11. Significance of fog computing to machine learning-enabled IoT for smart applications across industries -- Chapter 12. New cloud computing-based strategy for coordinating multi-robot systems -- Chapter 13. Impact of uavs in agriculture -- Chapter 14. A survey on diagnosis of hazardous gas emission using AI techniques -- Chapter 15. IoVST: internet of vehicles and smart traffic architecture, applications, and challenges -- Chapter 16. Smart cities: redefining urban life through IoT -- Chapter 17. IoT and machine learning on smart home-based data and a perspective on fog computing implementation -- Chapter 18. Activity recognition and IoT-based analysis using time series and CNN -- Chapter 19. A comprehensive review of IoT reliability and its measures: perspective analysis -- Chapter 20. Sustainable IoT for smart environmental control -- Chapter 21. Evolutionized industry with the Internet of things -- Chapter 22. Integration of WSN and IoT: wireless networks architecture and protocols a way to smart agriculture -- Chapter 23. The current generation 5G and evolution of 6G to 7G technologies: the future IoT. Restricted to subscribers or individual electronic text purchasers. The handbook of research on machine learning-enabled IoT for smart applications across industries highlights the importance of ML for IoT's success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. Also available in print. Mode of access: World Wide Web. Description based on title screen (IGI Global, viewed 07/07/2023). Industrial management Data processing. Internet of things. Machine learning. Goel, Neha 1983- editor. Yadav, Ravindra Kumar 1973- editor. IGI Global, publisher. Print version: 1668487853 9781668487853 FWS01 ZDB-98-IGB FWS_PDA_IGB http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-8785-3 Volltext |
spellingShingle | Handbook of research on machine learning enabled IoT for smart applications across industries Chapter 1. Challenges in various applications using IoT -- Chapter 2. Pattern recognition by IoT systems of machine learning -- Chapter 3. Institutional pressures on the oil and gas industry: the role of machine learning -- Chapter 4. Generative adversarial networks: a game changer GAN for machine learning and IoT applications -- Chapter 5. Machine learning-enabled Internet of things solution for smart agriculture operations -- Chapter 6. An investigative study on Internet of things in healthcare -- Chapter 7. Machine learning-based threat identification systems: machine learning-based IDS using decision tree -- Chapter 8. Future outlier detection algorithm for smarter industry application using ML and AI: explainable AI and ML for smart industry evolution using ML/AI algorithms and implementations -- Chapter 9. Edge computing: optimizing performance and enhancing user experience -- Chapter 10. The role of wireless body area networks in smart healthcare system in the context of big data and AI -- Chapter 11. Significance of fog computing to machine learning-enabled IoT for smart applications across industries -- Chapter 12. New cloud computing-based strategy for coordinating multi-robot systems -- Chapter 13. Impact of uavs in agriculture -- Chapter 14. A survey on diagnosis of hazardous gas emission using AI techniques -- Chapter 15. IoVST: internet of vehicles and smart traffic architecture, applications, and challenges -- Chapter 16. Smart cities: redefining urban life through IoT -- Chapter 17. IoT and machine learning on smart home-based data and a perspective on fog computing implementation -- Chapter 18. Activity recognition and IoT-based analysis using time series and CNN -- Chapter 19. A comprehensive review of IoT reliability and its measures: perspective analysis -- Chapter 20. Sustainable IoT for smart environmental control -- Chapter 21. Evolutionized industry with the Internet of things -- Chapter 22. Integration of WSN and IoT: wireless networks architecture and protocols a way to smart agriculture -- Chapter 23. The current generation 5G and evolution of 6G to 7G technologies: the future IoT. Industrial management Data processing. Internet of things. Machine learning. |
title | Handbook of research on machine learning enabled IoT for smart applications across industries |
title_alt | Handbook of research on machine learning enabled Internet of things for smart applications across industries |
title_auth | Handbook of research on machine learning enabled IoT for smart applications across industries |
title_exact_search | Handbook of research on machine learning enabled IoT for smart applications across industries |
title_full | Handbook of research on machine learning enabled IoT for smart applications across industries edited by Neha Goel, Ravindra Kumar Yadav. |
title_fullStr | Handbook of research on machine learning enabled IoT for smart applications across industries edited by Neha Goel, Ravindra Kumar Yadav. |
title_full_unstemmed | Handbook of research on machine learning enabled IoT for smart applications across industries edited by Neha Goel, Ravindra Kumar Yadav. |
title_short | Handbook of research on machine learning enabled IoT for smart applications across industries |
title_sort | handbook of research on machine learning enabled iot for smart applications across industries |
topic | Industrial management Data processing. Internet of things. Machine learning. |
topic_facet | Industrial management Data processing. Internet of things. Machine learning. |
url | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-8785-3 |
work_keys_str_mv | AT goelneha handbookofresearchonmachinelearningenablediotforsmartapplicationsacrossindustries AT yadavravindrakumar handbookofresearchonmachinelearningenablediotforsmartapplicationsacrossindustries AT igiglobal handbookofresearchonmachinelearningenablediotforsmartapplicationsacrossindustries AT goelneha handbookofresearchonmachinelearningenabledinternetofthingsforsmartapplicationsacrossindustries AT yadavravindrakumar handbookofresearchonmachinelearningenabledinternetofthingsforsmartapplicationsacrossindustries AT igiglobal handbookofresearchonmachinelearningenabledinternetofthingsforsmartapplicationsacrossindustries |