Machine learning applications for accounting disclosure and fraud detection:
"This book covers the application of machine learning models to identify "quality" characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. It uses machine learning techniques in accounting disclosure (i.e. corpora...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :
IGI Global,
[2021]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book covers the application of machine learning models to identify "quality" characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. It uses machine learning techniques in accounting disclosure (i.e. corporate financial statements) and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment"-- |
Beschreibung: | 22 PDFs (270 pages) Also available in print. |
Format: | Mode of access: World Wide Web. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781799848066 |
Zugangseinschränkungen: | Restricted to subscribers or individual electronic text purchasers. |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-98-IGB-00244580 | ||
003 | IGIG | ||
005 | 20201218124153.0 | ||
006 | m eo d | ||
007 | cr bn |||m|||a | ||
008 | 201219s2021 pau fob 001 0 eng d | ||
010 | |z 2020018651 | ||
020 | |a 9781799848066 |q ebook | ||
020 | |z 179984806X | ||
020 | |z 9781799848059 |q hardcover | ||
020 | |z 9781799857853 |q paperback | ||
024 | 7 | |a 10.4018/978-1-7998-4805-9 |2 doi | |
035 | |a (CaBNVSL)slc00000979 | ||
035 | |a (OCoLC)1227386865 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a HF5668.25 |b .M33 2021e | |
082 | 7 | |a 657.0285/631 |2 23 | |
245 | 0 | 0 | |a Machine learning applications for accounting disclosure and fraud detection |c Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor. |
264 | 1 | |a Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : |b IGI Global, |c [2021] | |
300 | |a 22 PDFs (270 pages) | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Chapter 1. Corporate governance as a tool for fraud mitigation -- Chapter 2. Corporate sector fraud: challenges and safety -- Chapter 3. Corporate governance: introduction, roles, codes of corporate governance -- Chapter 4. Fraud governance and good practices against fraud -- Chapter 5. Theoretical analysis of creative accounting: fraud in financial statements -- Chapter 6. Operational risk framework and fraud management: a contemporary approach -- Chapter 7. Current trends in investment analysis -- Chapter 8. A study on various applications of data mining and supervised learning techniques in business fraud detection -- Chapter 9. Detection and prevention of fraud in the digital era -- Chapter 10. Downside risk premium: a comparative analysis -- Chapter 11. Impact of corporate fraud on foreign direct investment?: evidence from China -- Chapter 12. Outsourcing of internal audit services instead of traditional internal audit units: a literature review on transition from in-house to outsourcing -- Chapter 13. Machine learning techniques and risk management: application to the banking sector during crisis -- Chapter 14. Application of adaptive neurofuzzy control in the field of credit insurance -- Chapter 15. Prediction of corporate failures for small and medium-sized enterprises in Europe: a comparison of statistical and machine learning approaches. | |
506 | |a Restricted to subscribers or individual electronic text purchasers. | ||
520 | 3 | |a "This book covers the application of machine learning models to identify "quality" characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. It uses machine learning techniques in accounting disclosure (i.e. corporate financial statements) and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment"-- |c Provided by publisher. | |
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
588 | |a Description based on title screen (IGI Global, viewed 12/19/2020). | ||
650 | 0 | |a Auditing, Internal |x Data processing. | |
650 | 0 | |a Corporations |x Accounting |x Data processing. | |
650 | 0 | |a Fraud |x Prevention. | |
650 | 0 | |a Machine learning. | |
650 | 7 | |a Auditing, Internal |x Data processing |2 fast | |
650 | 7 | |a Corporations |x Accounting |x Data processing |2 fast | |
650 | 7 | |a Fraud |x Prevention |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
700 | 1 | |a Chimonaki, Christiana, |e editor. | |
700 | 1 | |a Garefalakis, Alexandros, |e editor. | |
700 | 1 | |a Lemonakis, Christos, |e editor. | |
700 | 1 | |a Papadakis, Stylianos |d 1970- |e editor. | |
700 | 1 | |a Zopounidis, Constantin, |e editor. | |
710 | 2 | |a IGI Global, |e publisher. | |
776 | 0 | |c (Original) |w (DLC)2020018651 | |
776 | 0 | 8 | |i Print version: |z 1799848051 |z 9781799848059 |w (DLC) 2020018651 |
856 | 4 | 0 | |l FWS01 |p ZDB-98-IGB |q FWS_PDA_IGB |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4805-9 |3 Volltext |
912 | |a ZDB-98-IGB | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-98-IGB-00244580 |
---|---|
_version_ | 1804751461864701952 |
adam_text | |
any_adam_object | |
author2 | Chimonaki, Christiana Garefalakis, Alexandros Lemonakis, Christos Papadakis, Stylianos 1970- Zopounidis, Constantin |
author2_role | edt edt edt edt edt |
author2_variant | c c cc a g ag c l cl s p sp c z cz |
author_facet | Chimonaki, Christiana Garefalakis, Alexandros Lemonakis, Christos Papadakis, Stylianos 1970- Zopounidis, Constantin |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HF5668 |
callnumber-raw | HF5668.25 .M33 2021e |
callnumber-search | HF5668.25 .M33 2021e |
callnumber-sort | HF 45668.25 M33 42021E |
callnumber-subject | HF - Commerce |
collection | ZDB-98-IGB |
contents | Chapter 1. Corporate governance as a tool for fraud mitigation -- Chapter 2. Corporate sector fraud: challenges and safety -- Chapter 3. Corporate governance: introduction, roles, codes of corporate governance -- Chapter 4. Fraud governance and good practices against fraud -- Chapter 5. Theoretical analysis of creative accounting: fraud in financial statements -- Chapter 6. Operational risk framework and fraud management: a contemporary approach -- Chapter 7. Current trends in investment analysis -- Chapter 8. A study on various applications of data mining and supervised learning techniques in business fraud detection -- Chapter 9. Detection and prevention of fraud in the digital era -- Chapter 10. Downside risk premium: a comparative analysis -- Chapter 11. Impact of corporate fraud on foreign direct investment?: evidence from China -- Chapter 12. Outsourcing of internal audit services instead of traditional internal audit units: a literature review on transition from in-house to outsourcing -- Chapter 13. Machine learning techniques and risk management: application to the banking sector during crisis -- Chapter 14. Application of adaptive neurofuzzy control in the field of credit insurance -- Chapter 15. Prediction of corporate failures for small and medium-sized enterprises in Europe: a comparison of statistical and machine learning approaches. |
ctrlnum | (CaBNVSL)slc00000979 (OCoLC)1227386865 |
dewey-full | 657.0285/631 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 657 - Accounting |
dewey-raw | 657.0285/631 |
dewey-search | 657.0285/631 |
dewey-sort | 3657.0285 3631 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04191nam a2200589 i 4500</leader><controlfield tag="001">ZDB-98-IGB-00244580</controlfield><controlfield tag="003">IGIG</controlfield><controlfield tag="005">20201218124153.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr bn |||m|||a</controlfield><controlfield tag="008">201219s2021 pau fob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2020018651</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781799848066</subfield><subfield code="q">ebook</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">179984806X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781799848059</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781799857853</subfield><subfield code="q">paperback</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-7998-4805-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaBNVSL)slc00000979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227386865</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNVSL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">CaBNVSL</subfield><subfield code="d">CaBNVSL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HF5668.25</subfield><subfield code="b">.M33 2021e</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">657.0285/631</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Machine learning applications for accounting disclosure and fraud detection </subfield><subfield code="c">Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :</subfield><subfield code="b">IGI Global,</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 PDFs (270 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">electronic</subfield><subfield code="2">isbdmedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1. Corporate governance as a tool for fraud mitigation -- Chapter 2. Corporate sector fraud: challenges and safety -- Chapter 3. Corporate governance: introduction, roles, codes of corporate governance -- Chapter 4. Fraud governance and good practices against fraud -- Chapter 5. Theoretical analysis of creative accounting: fraud in financial statements -- Chapter 6. Operational risk framework and fraud management: a contemporary approach -- Chapter 7. Current trends in investment analysis -- Chapter 8. A study on various applications of data mining and supervised learning techniques in business fraud detection -- Chapter 9. Detection and prevention of fraud in the digital era -- Chapter 10. Downside risk premium: a comparative analysis -- Chapter 11. Impact of corporate fraud on foreign direct investment?: evidence from China -- Chapter 12. Outsourcing of internal audit services instead of traditional internal audit units: a literature review on transition from in-house to outsourcing -- Chapter 13. Machine learning techniques and risk management: application to the banking sector during crisis -- Chapter 14. Application of adaptive neurofuzzy control in the field of credit insurance -- Chapter 15. Prediction of corporate failures for small and medium-sized enterprises in Europe: a comparison of statistical and machine learning approaches.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Restricted to subscribers or individual electronic text purchasers.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book covers the application of machine learning models to identify "quality" characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. It uses machine learning techniques in accounting disclosure (i.e. corporate financial statements) and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="530" ind1=" " ind2=" "><subfield code="a">Also available in print.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on title screen (IGI Global, viewed 12/19/2020).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Auditing, Internal</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Corporations</subfield><subfield code="x">Accounting</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fraud</subfield><subfield code="x">Prevention.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Auditing, Internal</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corporations</subfield><subfield code="x">Accounting</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fraud</subfield><subfield code="x">Prevention</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chimonaki, Christiana,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garefalakis, Alexandros,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemonakis, Christos,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papadakis, Stylianos</subfield><subfield code="d">1970-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zopounidis, Constantin,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global,</subfield><subfield code="e">publisher.</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">(Original)</subfield><subfield code="w">(DLC)2020018651</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1799848051</subfield><subfield code="z">9781799848059</subfield><subfield code="w">(DLC) 2020018651</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FWS_PDA_IGB</subfield><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4805-9</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-98-IGB-00244580 |
illustrated | Not Illustrated |
indexdate | 2024-07-16T15:51:56Z |
institution | BVB |
isbn | 9781799848066 |
language | English |
oclc_num | 1227386865 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 22 PDFs (270 pages) Also available in print. |
psigel | ZDB-98-IGB |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | IGI Global, |
record_format | marc |
spelling | Machine learning applications for accounting disclosure and fraud detection Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : IGI Global, [2021] 22 PDFs (270 pages) text rdacontent electronic isbdmedia online resource rdacarrier Includes bibliographical references and index. Chapter 1. Corporate governance as a tool for fraud mitigation -- Chapter 2. Corporate sector fraud: challenges and safety -- Chapter 3. Corporate governance: introduction, roles, codes of corporate governance -- Chapter 4. Fraud governance and good practices against fraud -- Chapter 5. Theoretical analysis of creative accounting: fraud in financial statements -- Chapter 6. Operational risk framework and fraud management: a contemporary approach -- Chapter 7. Current trends in investment analysis -- Chapter 8. A study on various applications of data mining and supervised learning techniques in business fraud detection -- Chapter 9. Detection and prevention of fraud in the digital era -- Chapter 10. Downside risk premium: a comparative analysis -- Chapter 11. Impact of corporate fraud on foreign direct investment?: evidence from China -- Chapter 12. Outsourcing of internal audit services instead of traditional internal audit units: a literature review on transition from in-house to outsourcing -- Chapter 13. Machine learning techniques and risk management: application to the banking sector during crisis -- Chapter 14. Application of adaptive neurofuzzy control in the field of credit insurance -- Chapter 15. Prediction of corporate failures for small and medium-sized enterprises in Europe: a comparison of statistical and machine learning approaches. Restricted to subscribers or individual electronic text purchasers. "This book covers the application of machine learning models to identify "quality" characteristics in corporate accounting disclosure, proposing specific tools for detecting core business fraud characteristics. It uses machine learning techniques in accounting disclosure (i.e. corporate financial statements) and identifies methodological aspects revealing the deployment of fraudulent behavior and fraud detection in the corporate environment"-- Provided by publisher. Also available in print. Mode of access: World Wide Web. Description based on title screen (IGI Global, viewed 12/19/2020). Auditing, Internal Data processing. Corporations Accounting Data processing. Fraud Prevention. Machine learning. Auditing, Internal Data processing fast Corporations Accounting Data processing fast Fraud Prevention fast Machine learning fast Chimonaki, Christiana, editor. Garefalakis, Alexandros, editor. Lemonakis, Christos, editor. Papadakis, Stylianos 1970- editor. Zopounidis, Constantin, editor. IGI Global, publisher. (Original) (DLC)2020018651 Print version: 1799848051 9781799848059 (DLC) 2020018651 FWS01 ZDB-98-IGB FWS_PDA_IGB http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4805-9 Volltext |
spellingShingle | Machine learning applications for accounting disclosure and fraud detection Chapter 1. Corporate governance as a tool for fraud mitigation -- Chapter 2. Corporate sector fraud: challenges and safety -- Chapter 3. Corporate governance: introduction, roles, codes of corporate governance -- Chapter 4. Fraud governance and good practices against fraud -- Chapter 5. Theoretical analysis of creative accounting: fraud in financial statements -- Chapter 6. Operational risk framework and fraud management: a contemporary approach -- Chapter 7. Current trends in investment analysis -- Chapter 8. A study on various applications of data mining and supervised learning techniques in business fraud detection -- Chapter 9. Detection and prevention of fraud in the digital era -- Chapter 10. Downside risk premium: a comparative analysis -- Chapter 11. Impact of corporate fraud on foreign direct investment?: evidence from China -- Chapter 12. Outsourcing of internal audit services instead of traditional internal audit units: a literature review on transition from in-house to outsourcing -- Chapter 13. Machine learning techniques and risk management: application to the banking sector during crisis -- Chapter 14. Application of adaptive neurofuzzy control in the field of credit insurance -- Chapter 15. Prediction of corporate failures for small and medium-sized enterprises in Europe: a comparison of statistical and machine learning approaches. Auditing, Internal Data processing. Corporations Accounting Data processing. Fraud Prevention. Machine learning. Auditing, Internal Data processing fast Corporations Accounting Data processing fast Fraud Prevention fast Machine learning fast |
title | Machine learning applications for accounting disclosure and fraud detection |
title_auth | Machine learning applications for accounting disclosure and fraud detection |
title_exact_search | Machine learning applications for accounting disclosure and fraud detection |
title_full | Machine learning applications for accounting disclosure and fraud detection Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor. |
title_fullStr | Machine learning applications for accounting disclosure and fraud detection Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor. |
title_full_unstemmed | Machine learning applications for accounting disclosure and fraud detection Stylianos Papadakis, Alexandros Garefalakis, Christos Lemonakis, Christiana Chimonaki and Constantin Zopounidis, editor. |
title_short | Machine learning applications for accounting disclosure and fraud detection |
title_sort | machine learning applications for accounting disclosure and fraud detection |
topic | Auditing, Internal Data processing. Corporations Accounting Data processing. Fraud Prevention. Machine learning. Auditing, Internal Data processing fast Corporations Accounting Data processing fast Fraud Prevention fast Machine learning fast |
topic_facet | Auditing, Internal Data processing. Corporations Accounting Data processing. Fraud Prevention. Machine learning. Auditing, Internal Data processing Corporations Accounting Data processing Fraud Prevention Machine learning |
url | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4805-9 |
work_keys_str_mv | AT chimonakichristiana machinelearningapplicationsforaccountingdisclosureandfrauddetection AT garefalakisalexandros machinelearningapplicationsforaccountingdisclosureandfrauddetection AT lemonakischristos machinelearningapplicationsforaccountingdisclosureandfrauddetection AT papadakisstylianos machinelearningapplicationsforaccountingdisclosureandfrauddetection AT zopounidisconstantin machinelearningapplicationsforaccountingdisclosureandfrauddetection AT igiglobal machinelearningapplicationsforaccountingdisclosureandfrauddetection |