Next-generation wireless networks meet advanced machine learning applications:
"This book explores the latest trends in various technologies of next generation wireless networks. It looks into the use of machine learning techniques to model various technical problems of next-generation systems that will enable the dynamic optimization of system configuration"--
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :
IGI Global,
[2019]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book explores the latest trends in various technologies of next generation wireless networks. It looks into the use of machine learning techniques to model various technical problems of next-generation systems that will enable the dynamic optimization of system configuration"-- |
Beschreibung: | 23 PDFs (356 pages) Also available in print. |
Format: | Mode of access: World Wide Web. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781522574590 |
Zugangseinschränkungen: | Restricted to subscribers or individual electronic text purchasers. |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-98-IGB-00207258 | ||
003 | IGIG | ||
005 | 20190123105237.0 | ||
006 | m eo d | ||
007 | cr bn |||m|||a | ||
008 | 190124s2019 pau fob 001 0 eng d | ||
010 | |z 2018028321 | ||
020 | |a 9781522574590 |q ebook | ||
020 | |z 9781522574583 |q hardcover | ||
024 | 7 | |a 10.4018/978-1-5225-7458-3 |2 doi | |
035 | |a (CaBNVSL)slc20537609 | ||
035 | |a (OCoLC)1083341823 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a TK5103.4815 |b .N49 2019e | |
082 | 7 | |a 006.3/1 |2 23 | |
245 | 0 | 0 | |a Next-generation wireless networks meet advanced machine learning applications |c Ioan-Sorin Comsa and Ramona Trestian, editors. |
264 | 1 | |a Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : |b IGI Global, |c [2019] | |
300 | |a 23 PDFs (356 pages) | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Section 1. Machine learning evolution for wireless communications. Chapter 1. The role and applications of machine learning in future self-organizing cellular networks ; Chapter 2. Machine learning in radio resource scheduling ; Chapter 3. Machine learning for internet of things ; Chapter 4. A survey on routing protocols of wireless sensor networks: a reliable data transfer using multiple sink for disaster management ; Chapter 5. Review: effective solutions for challenges in cognitive radio networks ; Chapter 6. Overview of machine learning approaches for wireless communication ; Chapter 7. Machine learning in wireless communication: a Survey -- Section 2. Machine learning and artificial intelligence applications. Chapter 8. Guaranteeing user rates with reinforcement learning in 5g radio access networks ; Chapter 9. Online learning and heuristic algorithms for 5g cloud-RAN load balance ; Chapter 10. Machine learning-based subjective quality estimation for video streaming over wireless networks ; Chapter 11. Adaptive principal component analysis-based outliers detection through neighborhood voting in wireless sensor networks ; Chapter 12. Intelligent tracking and positioning of targets using passive sensing systems ; Chapter 13. Cheerbot: a step ahead of conventional chatbot. | |
506 | |a Restricted to subscribers or individual electronic text purchasers. | ||
520 | 3 | |a "This book explores the latest trends in various technologies of next generation wireless networks. It looks into the use of machine learning techniques to model various technical problems of next-generation systems that will enable the dynamic optimization of system configuration"-- |c Provided by publisher. | |
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
588 | |a Description based on title screen (IGI Global, viewed 01/24/2019). | ||
650 | 0 | |a Cognitive radio networks. | |
650 | 0 | |a Machine learning. | |
650 | 0 | |a Self-organizing systems. | |
650 | 0 | |a Wireless communication systems |x Automatic control. | |
700 | 1 | |a Comsa, Ioan-Sorin |d 1984- |e editor. | |
700 | 1 | |a Trestian, Ramona |d 1983- |e editor. | |
710 | 2 | |a IGI Global, |e publisher. | |
776 | 0 | |c (Original) |w (DLC)2018028321 | |
776 | 0 | 8 | |i Print version: |z 1522574581 |z 9781522574583 |w (DLC) 2018028321 |
856 | 4 | 0 | |l FWS01 |p ZDB-98-IGB |q FWS_PDA_IGB |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7458-3 |3 Volltext |
912 | |a ZDB-98-IGB | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-98-IGB-00207258 |
---|---|
_version_ | 1816797080910299136 |
adam_text | |
any_adam_object | |
author2 | Comsa, Ioan-Sorin 1984- Trestian, Ramona 1983- |
author2_role | edt edt |
author2_variant | i s c isc r t rt |
author_facet | Comsa, Ioan-Sorin 1984- Trestian, Ramona 1983- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5103 |
callnumber-raw | TK5103.4815 .N49 2019e |
callnumber-search | TK5103.4815 .N49 2019e |
callnumber-sort | TK 45103.4815 N49 42019E |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-98-IGB |
contents | Section 1. Machine learning evolution for wireless communications. Chapter 1. The role and applications of machine learning in future self-organizing cellular networks ; Chapter 2. Machine learning in radio resource scheduling ; Chapter 3. Machine learning for internet of things ; Chapter 4. A survey on routing protocols of wireless sensor networks: a reliable data transfer using multiple sink for disaster management ; Chapter 5. Review: effective solutions for challenges in cognitive radio networks ; Chapter 6. Overview of machine learning approaches for wireless communication ; Chapter 7. Machine learning in wireless communication: a Survey -- Section 2. Machine learning and artificial intelligence applications. Chapter 8. Guaranteeing user rates with reinforcement learning in 5g radio access networks ; Chapter 9. Online learning and heuristic algorithms for 5g cloud-RAN load balance ; Chapter 10. Machine learning-based subjective quality estimation for video streaming over wireless networks ; Chapter 11. Adaptive principal component analysis-based outliers detection through neighborhood voting in wireless sensor networks ; Chapter 12. Intelligent tracking and positioning of targets using passive sensing systems ; Chapter 13. Cheerbot: a step ahead of conventional chatbot. |
ctrlnum | (CaBNVSL)slc20537609 (OCoLC)1083341823 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03466nam a2200481 i 4500</leader><controlfield tag="001">ZDB-98-IGB-00207258</controlfield><controlfield tag="003">IGIG</controlfield><controlfield tag="005">20190123105237.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr bn |||m|||a</controlfield><controlfield tag="008">190124s2019 pau fob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2018028321</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781522574590</subfield><subfield code="q">ebook</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781522574583</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-5225-7458-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaBNVSL)slc20537609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1083341823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNVSL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">CaBNVSL</subfield><subfield code="d">CaBNVSL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5103.4815</subfield><subfield code="b">.N49 2019e</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Next-generation wireless networks meet advanced machine learning applications </subfield><subfield code="c">Ioan-Sorin Comsa and Ramona Trestian, editors.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :</subfield><subfield code="b">IGI Global,</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23 PDFs (356 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">electronic</subfield><subfield code="2">isbdmedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Section 1. Machine learning evolution for wireless communications. Chapter 1. The role and applications of machine learning in future self-organizing cellular networks ; Chapter 2. Machine learning in radio resource scheduling ; Chapter 3. Machine learning for internet of things ; Chapter 4. A survey on routing protocols of wireless sensor networks: a reliable data transfer using multiple sink for disaster management ; Chapter 5. Review: effective solutions for challenges in cognitive radio networks ; Chapter 6. Overview of machine learning approaches for wireless communication ; Chapter 7. Machine learning in wireless communication: a Survey -- Section 2. Machine learning and artificial intelligence applications. Chapter 8. Guaranteeing user rates with reinforcement learning in 5g radio access networks ; Chapter 9. Online learning and heuristic algorithms for 5g cloud-RAN load balance ; Chapter 10. Machine learning-based subjective quality estimation for video streaming over wireless networks ; Chapter 11. Adaptive principal component analysis-based outliers detection through neighborhood voting in wireless sensor networks ; Chapter 12. Intelligent tracking and positioning of targets using passive sensing systems ; Chapter 13. Cheerbot: a step ahead of conventional chatbot.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Restricted to subscribers or individual electronic text purchasers.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book explores the latest trends in various technologies of next generation wireless networks. It looks into the use of machine learning techniques to model various technical problems of next-generation systems that will enable the dynamic optimization of system configuration"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="530" ind1=" " ind2=" "><subfield code="a">Also available in print.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on title screen (IGI Global, viewed 01/24/2019).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cognitive radio networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Self-organizing systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wireless communication systems</subfield><subfield code="x">Automatic control.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Comsa, Ioan-Sorin</subfield><subfield code="d">1984-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trestian, Ramona</subfield><subfield code="d">1983-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global,</subfield><subfield code="e">publisher.</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">(Original)</subfield><subfield code="w">(DLC)2018028321</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1522574581</subfield><subfield code="z">9781522574583</subfield><subfield code="w">(DLC) 2018028321</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FWS_PDA_IGB</subfield><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7458-3</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-98-IGB-00207258 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:51:54Z |
institution | BVB |
isbn | 9781522574590 |
language | English |
oclc_num | 1083341823 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 23 PDFs (356 pages) Also available in print. |
psigel | ZDB-98-IGB |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | IGI Global, |
record_format | marc |
spelling | Next-generation wireless networks meet advanced machine learning applications Ioan-Sorin Comsa and Ramona Trestian, editors. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : IGI Global, [2019] 23 PDFs (356 pages) text rdacontent electronic isbdmedia online resource rdacarrier Includes bibliographical references and index. Section 1. Machine learning evolution for wireless communications. Chapter 1. The role and applications of machine learning in future self-organizing cellular networks ; Chapter 2. Machine learning in radio resource scheduling ; Chapter 3. Machine learning for internet of things ; Chapter 4. A survey on routing protocols of wireless sensor networks: a reliable data transfer using multiple sink for disaster management ; Chapter 5. Review: effective solutions for challenges in cognitive radio networks ; Chapter 6. Overview of machine learning approaches for wireless communication ; Chapter 7. Machine learning in wireless communication: a Survey -- Section 2. Machine learning and artificial intelligence applications. Chapter 8. Guaranteeing user rates with reinforcement learning in 5g radio access networks ; Chapter 9. Online learning and heuristic algorithms for 5g cloud-RAN load balance ; Chapter 10. Machine learning-based subjective quality estimation for video streaming over wireless networks ; Chapter 11. Adaptive principal component analysis-based outliers detection through neighborhood voting in wireless sensor networks ; Chapter 12. Intelligent tracking and positioning of targets using passive sensing systems ; Chapter 13. Cheerbot: a step ahead of conventional chatbot. Restricted to subscribers or individual electronic text purchasers. "This book explores the latest trends in various technologies of next generation wireless networks. It looks into the use of machine learning techniques to model various technical problems of next-generation systems that will enable the dynamic optimization of system configuration"-- Provided by publisher. Also available in print. Mode of access: World Wide Web. Description based on title screen (IGI Global, viewed 01/24/2019). Cognitive radio networks. Machine learning. Self-organizing systems. Wireless communication systems Automatic control. Comsa, Ioan-Sorin 1984- editor. Trestian, Ramona 1983- editor. IGI Global, publisher. (Original) (DLC)2018028321 Print version: 1522574581 9781522574583 (DLC) 2018028321 FWS01 ZDB-98-IGB FWS_PDA_IGB http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7458-3 Volltext |
spellingShingle | Next-generation wireless networks meet advanced machine learning applications Section 1. Machine learning evolution for wireless communications. Chapter 1. The role and applications of machine learning in future self-organizing cellular networks ; Chapter 2. Machine learning in radio resource scheduling ; Chapter 3. Machine learning for internet of things ; Chapter 4. A survey on routing protocols of wireless sensor networks: a reliable data transfer using multiple sink for disaster management ; Chapter 5. Review: effective solutions for challenges in cognitive radio networks ; Chapter 6. Overview of machine learning approaches for wireless communication ; Chapter 7. Machine learning in wireless communication: a Survey -- Section 2. Machine learning and artificial intelligence applications. Chapter 8. Guaranteeing user rates with reinforcement learning in 5g radio access networks ; Chapter 9. Online learning and heuristic algorithms for 5g cloud-RAN load balance ; Chapter 10. Machine learning-based subjective quality estimation for video streaming over wireless networks ; Chapter 11. Adaptive principal component analysis-based outliers detection through neighborhood voting in wireless sensor networks ; Chapter 12. Intelligent tracking and positioning of targets using passive sensing systems ; Chapter 13. Cheerbot: a step ahead of conventional chatbot. Cognitive radio networks. Machine learning. Self-organizing systems. Wireless communication systems Automatic control. |
title | Next-generation wireless networks meet advanced machine learning applications |
title_auth | Next-generation wireless networks meet advanced machine learning applications |
title_exact_search | Next-generation wireless networks meet advanced machine learning applications |
title_full | Next-generation wireless networks meet advanced machine learning applications Ioan-Sorin Comsa and Ramona Trestian, editors. |
title_fullStr | Next-generation wireless networks meet advanced machine learning applications Ioan-Sorin Comsa and Ramona Trestian, editors. |
title_full_unstemmed | Next-generation wireless networks meet advanced machine learning applications Ioan-Sorin Comsa and Ramona Trestian, editors. |
title_short | Next-generation wireless networks meet advanced machine learning applications |
title_sort | next generation wireless networks meet advanced machine learning applications |
topic | Cognitive radio networks. Machine learning. Self-organizing systems. Wireless communication systems Automatic control. |
topic_facet | Cognitive radio networks. Machine learning. Self-organizing systems. Wireless communication systems Automatic control. |
url | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7458-3 |
work_keys_str_mv | AT comsaioansorin nextgenerationwirelessnetworksmeetadvancedmachinelearningapplications AT trestianramona nextgenerationwirelessnetworksmeetadvancedmachinelearningapplications AT igiglobal nextgenerationwirelessnetworksmeetadvancedmachinelearningapplications |