Modern technologies for big data classification and clustering:
"This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithm...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :
IGI Global,
[2018]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"-- |
Beschreibung: | 15 PDFs (xxi, 360 pages) Also available in print. |
Format: | Mode of access: World Wide Web. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781522528067 |
Zugangseinschränkungen: | Restricted to subscribers or individual electronic text purchasers. |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-98-IGB-00178729 | ||
003 | IGIG | ||
005 | 20170717150625.0 | ||
006 | m eo d | ||
007 | cr bn |||m|||a | ||
008 | 170718s2018 pau fob 001 0 eng d | ||
010 | |z 2017010783 | ||
020 | |a 9781522528067 |q ebook | ||
020 | |z 9781522528050 |q hardcover | ||
024 | 7 | |a 10.4018/978-1-5225-2805-0 |2 doi | |
035 | |a (CaBNVSL)slc19713224 | ||
035 | |a (OCoLC)988619713 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a QA76.9.B45 |b M63 2018e | |
082 | 7 | |a 005.7 |2 23 | |
245 | 0 | 0 | |a Modern technologies for big data classification and clustering |c Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors. |
264 | 1 | |a Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : |b IGI Global, |c [2018] | |
300 | |a 15 PDFs (xxi, 360 pages) | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Chapter 1. Uncertainty-based clustering algorithms for large data sets -- Chapter 2. Sentiment mining approaches for big data classification and clustering -- Chapter 3. Data compaction techniques -- Chapter 4. Methodologies and technologies to retrieve information from text sources -- Chapter 5. Twitter data analysis -- Chapter 6. Use of social network analysis in telecommunication domain -- Chapter 7. A review on spatial big data analytics and visualization -- Chapter 8. A survey on overlapping communities in large-scale social networks -- Chapter 9. A brief study of approaches to text feature selection -- Chapter 10. Biological big data analysis and visualization: a survey. | |
506 | |a Restricted to subscribers or individual electronic text purchasers. | ||
520 | 3 | |a "This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"-- |c Provided by publisher. | |
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
588 | |a Description based on title screen (IGI Global, viewed 07/18/2017). | ||
650 | 0 | |a Big data. | |
650 | 0 | |a Classification |x Nonbook materials. | |
650 | 0 | |a Cluster analysis. | |
650 | 0 | |a Data mining. | |
650 | 0 | |a Document clustering. | |
700 | 1 | |a Murty, M. Narasimha, |e editor. | |
700 | 1 | |a Seetha, Hari |d 1970- |e editor. | |
700 | 1 | |a Tripathy, B. K. |d 1957- |e editor. | |
710 | 2 | |a IGI Global, |e publisher. | |
776 | 0 | |c (Original) |w (DLC)2017010783 | |
776 | 0 | 8 | |i Print version: |z 1522528059 |z 9781522528050 |w (DLC) 2017010783 |
856 | 4 | 0 | |l FWS01 |p ZDB-98-IGB |q FWS_PDA_IGB |u http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2805-0 |3 Volltext |
912 | |a ZDB-98-IGB | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-98-IGB-00178729 |
---|---|
_version_ | 1816797078688366592 |
adam_text | |
any_adam_object | |
author2 | Murty, M. Narasimha Seetha, Hari 1970- Tripathy, B. K. 1957- |
author2_role | edt edt edt |
author2_variant | m n m mn mnm h s hs b k t bk bkt |
author_facet | Murty, M. Narasimha Seetha, Hari 1970- Tripathy, B. K. 1957- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.B45 M63 2018e |
callnumber-search | QA76.9.B45 M63 2018e |
callnumber-sort | QA 276.9 B45 M63 42018E |
callnumber-subject | QA - Mathematics |
collection | ZDB-98-IGB |
contents | Chapter 1. Uncertainty-based clustering algorithms for large data sets -- Chapter 2. Sentiment mining approaches for big data classification and clustering -- Chapter 3. Data compaction techniques -- Chapter 4. Methodologies and technologies to retrieve information from text sources -- Chapter 5. Twitter data analysis -- Chapter 6. Use of social network analysis in telecommunication domain -- Chapter 7. A review on spatial big data analytics and visualization -- Chapter 8. A survey on overlapping communities in large-scale social networks -- Chapter 9. A brief study of approaches to text feature selection -- Chapter 10. Biological big data analysis and visualization: a survey. |
ctrlnum | (CaBNVSL)slc19713224 (OCoLC)988619713 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03002nam a2200505 i 4500</leader><controlfield tag="001">ZDB-98-IGB-00178729</controlfield><controlfield tag="003">IGIG</controlfield><controlfield tag="005">20170717150625.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr bn |||m|||a</controlfield><controlfield tag="008">170718s2018 pau fob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2017010783</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781522528067</subfield><subfield code="q">ebook</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781522528050</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-5225-2805-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaBNVSL)slc19713224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988619713</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNVSL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">CaBNVSL</subfield><subfield code="d">CaBNVSL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.B45</subfield><subfield code="b">M63 2018e</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Modern technologies for big data classification and clustering </subfield><subfield code="c">Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) :</subfield><subfield code="b">IGI Global,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 PDFs (xxi, 360 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">electronic</subfield><subfield code="2">isbdmedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1. Uncertainty-based clustering algorithms for large data sets -- Chapter 2. Sentiment mining approaches for big data classification and clustering -- Chapter 3. Data compaction techniques -- Chapter 4. Methodologies and technologies to retrieve information from text sources -- Chapter 5. Twitter data analysis -- Chapter 6. Use of social network analysis in telecommunication domain -- Chapter 7. A review on spatial big data analytics and visualization -- Chapter 8. A survey on overlapping communities in large-scale social networks -- Chapter 9. A brief study of approaches to text feature selection -- Chapter 10. Biological big data analysis and visualization: a survey.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Restricted to subscribers or individual electronic text purchasers.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="530" ind1=" " ind2=" "><subfield code="a">Also available in print.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on title screen (IGI Global, viewed 07/18/2017).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Classification</subfield><subfield code="x">Nonbook materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cluster analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Document clustering.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murty, M. Narasimha,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seetha, Hari</subfield><subfield code="d">1970-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tripathy, B. K.</subfield><subfield code="d">1957-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global,</subfield><subfield code="e">publisher.</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">(Original)</subfield><subfield code="w">(DLC)2017010783</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1522528059</subfield><subfield code="z">9781522528050</subfield><subfield code="w">(DLC) 2017010783</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FWS_PDA_IGB</subfield><subfield code="u">http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2805-0</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-98-IGB-00178729 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:51:51Z |
institution | BVB |
isbn | 9781522528067 |
language | English |
oclc_num | 988619713 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 15 PDFs (xxi, 360 pages) Also available in print. |
psigel | ZDB-98-IGB |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | IGI Global, |
record_format | marc |
spelling | Modern technologies for big data classification and clustering Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : IGI Global, [2018] 15 PDFs (xxi, 360 pages) text rdacontent electronic isbdmedia online resource rdacarrier Includes bibliographical references and index. Chapter 1. Uncertainty-based clustering algorithms for large data sets -- Chapter 2. Sentiment mining approaches for big data classification and clustering -- Chapter 3. Data compaction techniques -- Chapter 4. Methodologies and technologies to retrieve information from text sources -- Chapter 5. Twitter data analysis -- Chapter 6. Use of social network analysis in telecommunication domain -- Chapter 7. A review on spatial big data analytics and visualization -- Chapter 8. A survey on overlapping communities in large-scale social networks -- Chapter 9. A brief study of approaches to text feature selection -- Chapter 10. Biological big data analysis and visualization: a survey. Restricted to subscribers or individual electronic text purchasers. "This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"-- Provided by publisher. Also available in print. Mode of access: World Wide Web. Description based on title screen (IGI Global, viewed 07/18/2017). Big data. Classification Nonbook materials. Cluster analysis. Data mining. Document clustering. Murty, M. Narasimha, editor. Seetha, Hari 1970- editor. Tripathy, B. K. 1957- editor. IGI Global, publisher. (Original) (DLC)2017010783 Print version: 1522528059 9781522528050 (DLC) 2017010783 FWS01 ZDB-98-IGB FWS_PDA_IGB http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2805-0 Volltext |
spellingShingle | Modern technologies for big data classification and clustering Chapter 1. Uncertainty-based clustering algorithms for large data sets -- Chapter 2. Sentiment mining approaches for big data classification and clustering -- Chapter 3. Data compaction techniques -- Chapter 4. Methodologies and technologies to retrieve information from text sources -- Chapter 5. Twitter data analysis -- Chapter 6. Use of social network analysis in telecommunication domain -- Chapter 7. A review on spatial big data analytics and visualization -- Chapter 8. A survey on overlapping communities in large-scale social networks -- Chapter 9. A brief study of approaches to text feature selection -- Chapter 10. Biological big data analysis and visualization: a survey. Big data. Classification Nonbook materials. Cluster analysis. Data mining. Document clustering. |
title | Modern technologies for big data classification and clustering |
title_auth | Modern technologies for big data classification and clustering |
title_exact_search | Modern technologies for big data classification and clustering |
title_full | Modern technologies for big data classification and clustering Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors. |
title_fullStr | Modern technologies for big data classification and clustering Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors. |
title_full_unstemmed | Modern technologies for big data classification and clustering Hari Seetha, M. Narasimha Murty, and B.K. Tripathy, editors. |
title_short | Modern technologies for big data classification and clustering |
title_sort | modern technologies for big data classification and clustering |
topic | Big data. Classification Nonbook materials. Cluster analysis. Data mining. Document clustering. |
topic_facet | Big data. Classification Nonbook materials. Cluster analysis. Data mining. Document clustering. |
url | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2805-0 |
work_keys_str_mv | AT murtymnarasimha moderntechnologiesforbigdataclassificationandclustering AT seethahari moderntechnologiesforbigdataclassificationandclustering AT tripathybk moderntechnologiesforbigdataclassificationandclustering AT igiglobal moderntechnologiesforbigdataclassificationandclustering |