Self-learning and adaptive algorithms for business applications :: a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions /
In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bingley, UK :
Emerald Publishing,
2019.
|
Ausgabe: | First edition. |
Schriftenreihe: | Emerald points.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781838671716 1838671714 9781838671730 1838671730 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-on1104209023 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 190611s2019 enk ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d EBLCP |d OCLCF |d UKMGB |d UKAHL |d OTZ |d OCLCQ |d SFB |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
015 | |a GBB964754 |2 bnb | ||
016 | 7 | |a 019349566 |2 Uk | |
020 | |a 9781838671716 |q (electronic bk.) | ||
020 | |a 1838671714 |q (electronic bk.) | ||
020 | |a 9781838671730 |q (ePub ebook) | ||
020 | |a 1838671730 | ||
020 | |z 9781838671747 | ||
035 | |a (OCoLC)1104209023 | ||
037 | |a 9781838671730 |b Emerald Publishing | ||
050 | 4 | |a HD30.2 | |
072 | 7 | |a BUS |x 082000 |2 bisacsh | |
072 | 7 | |a BUS |x 041000 |2 bisacsh | |
072 | 7 | |a BUS |x 042000 |2 bisacsh | |
072 | 7 | |a BUS |x 085000 |2 bisacsh | |
080 | |a 658 | ||
082 | 7 | |a 658.4038 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Hu, Zhengbing, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjxqfyQRBHgYvGjwvgrRBq |0 http://id.loc.gov/authorities/names/no2009129726 | |
245 | 1 | 0 | |a Self-learning and adaptive algorithms for business applications : |b a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / |c by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. |
250 | |a First edition. | ||
264 | 1 | |a Bingley, UK : |b Emerald Publishing, |c 2019. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Emerald points | |
504 | |a Includes bibliographical references. | ||
588 | |a Online resource; title from PDF title page (EBSCO, viewed June 13, 2019). | ||
505 | 0 | |a Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning | |
505 | 8 | |a 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method | |
505 | 8 | |a 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification | |
505 | 8 | |a 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter | |
505 | 8 | |a 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References | |
520 | |a In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear. | ||
650 | 0 | |a Electronic data processing. |0 http://id.loc.gov/authorities/subjects/sh85042288 | |
650 | 0 | |a Business |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh85018264 | |
650 | 0 | |a Fuzzy systems. |0 http://id.loc.gov/authorities/subjects/sh85052628 | |
650 | 6 | |a Gestion |x Informatique. | |
650 | 6 | |a Systèmes flous. | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a BUSINESS & ECONOMICS |x Industrial Management. |2 bisacsh | |
650 | 7 | |a BUSINESS & ECONOMICS |x Management. |2 bisacsh | |
650 | 7 | |a BUSINESS & ECONOMICS |x Management Science. |2 bisacsh | |
650 | 7 | |a BUSINESS & ECONOMICS |x Organizational Behavior. |2 bisacsh | |
650 | 7 | |a Business |x Data processing |2 fast | |
650 | 7 | |a Electronic data processing |2 fast | |
650 | 7 | |a Fuzzy systems |2 fast | |
700 | 1 | |a Bodyanskiy, Yevgeniy V., |e author | |
700 | 1 | |a Tyshchenko, Oleksii, |e author. | |
758 | |i has work: |a Self-learning and adaptive algorithms for business applications (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFTv6ppQ4kHBCXGPcDkfYP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |z 9781838671747 |
830 | 0 | |a Emerald points. |0 http://id.loc.gov/authorities/names/no2018010552 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2040570 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH35976434 | ||
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0039757353 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5787820 | ||
938 | |a EBSCOhost |b EBSC |n 2040570 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-on1104209023 |
---|---|
_version_ | 1816796934335102976 |
adam_text | |
any_adam_object | |
author | Hu, Zhengbing Bodyanskiy, Yevgeniy V. Tyshchenko, Oleksii |
author_GND | http://id.loc.gov/authorities/names/no2009129726 |
author_facet | Hu, Zhengbing Bodyanskiy, Yevgeniy V. Tyshchenko, Oleksii |
author_role | aut aut aut |
author_sort | Hu, Zhengbing |
author_variant | z h zh y v b yv yvb o t ot |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HD30 |
callnumber-raw | HD30.2 |
callnumber-search | HD30.2 |
callnumber-sort | HD 230.2 |
callnumber-subject | HD - Industries, Land Use, Labor |
collection | ZDB-4-EBU |
contents | Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References |
ctrlnum | (OCoLC)1104209023 |
dewey-full | 658.4038 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4038 |
dewey-search | 658.4038 |
dewey-sort | 3658.4038 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06300cam a2200805 i 4500</leader><controlfield tag="001">ZDB-4-EBU-on1104209023</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">190611s2019 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB964754</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019349566</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838671716</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838671714</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838671730</subfield><subfield code="q">(ePub ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838671730</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838671747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104209023</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838671730</subfield><subfield code="b">Emerald Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HD30.2</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">082000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">042000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">085000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">658</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">658.4038</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Zhengbing,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxqfyQRBHgYvGjwvgrRBq</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009129726</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-learning and adaptive algorithms for business applications :</subfield><subfield code="b">a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions /</subfield><subfield code="c">by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bingley, UK :</subfield><subfield code="b">Emerald Publishing,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Emerald points</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed June 13, 2019).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042288</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business</subfield><subfield code="x">Data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018264</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fuzzy systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052628</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Gestion</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes flous.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Industrial Management.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Management.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Management Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Organizational Behavior.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bodyanskiy, Yevgeniy V.,</subfield><subfield code="e">author</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyshchenko, Oleksii,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Self-learning and adaptive algorithms for business applications (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFTv6ppQ4kHBCXGPcDkfYP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="z">9781838671747</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Emerald points.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018010552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2040570</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35976434</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0039757353</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5787820</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2040570</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-on1104209023 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:49:34Z |
institution | BVB |
isbn | 9781838671716 1838671714 9781838671730 1838671730 |
language | English |
oclc_num | 1104209023 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBU |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Emerald Publishing, |
record_format | marc |
series | Emerald points. |
series2 | Emerald points |
spelling | Hu, Zhengbing, author. https://id.oclc.org/worldcat/entity/E39PCjxqfyQRBHgYvGjwvgrRBq http://id.loc.gov/authorities/names/no2009129726 Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. First edition. Bingley, UK : Emerald Publishing, 2019. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Emerald points Includes bibliographical references. Online resource; title from PDF title page (EBSCO, viewed June 13, 2019). Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear. Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Business Data processing. http://id.loc.gov/authorities/subjects/sh85018264 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Gestion Informatique. Systèmes flous. Neural networks & fuzzy systems. bicssc BUSINESS & ECONOMICS Industrial Management. bisacsh BUSINESS & ECONOMICS Management. bisacsh BUSINESS & ECONOMICS Management Science. bisacsh BUSINESS & ECONOMICS Organizational Behavior. bisacsh Business Data processing fast Electronic data processing fast Fuzzy systems fast Bodyanskiy, Yevgeniy V., author Tyshchenko, Oleksii, author. has work: Self-learning and adaptive algorithms for business applications (Text) https://id.oclc.org/worldcat/entity/E39PCFTv6ppQ4kHBCXGPcDkfYP https://id.oclc.org/worldcat/ontology/hasWork Print version : 9781838671747 Emerald points. http://id.loc.gov/authorities/names/no2018010552 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2040570 Volltext |
spellingShingle | Hu, Zhengbing Bodyanskiy, Yevgeniy V. Tyshchenko, Oleksii Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / Emerald points. Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Business Data processing. http://id.loc.gov/authorities/subjects/sh85018264 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Gestion Informatique. Systèmes flous. Neural networks & fuzzy systems. bicssc BUSINESS & ECONOMICS Industrial Management. bisacsh BUSINESS & ECONOMICS Management. bisacsh BUSINESS & ECONOMICS Management Science. bisacsh BUSINESS & ECONOMICS Organizational Behavior. bisacsh Business Data processing fast Electronic data processing fast Fuzzy systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85042288 http://id.loc.gov/authorities/subjects/sh85018264 http://id.loc.gov/authorities/subjects/sh85052628 |
title | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / |
title_auth | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / |
title_exact_search | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / |
title_full | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. |
title_fullStr | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. |
title_full_unstemmed | Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. |
title_short | Self-learning and adaptive algorithms for business applications : |
title_sort | self learning and adaptive algorithms for business applications a guide to adaptive neuro fuzzy systems for fuzzy clustering under uncertainty conditions |
title_sub | a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions / |
topic | Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Business Data processing. http://id.loc.gov/authorities/subjects/sh85018264 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Gestion Informatique. Systèmes flous. Neural networks & fuzzy systems. bicssc BUSINESS & ECONOMICS Industrial Management. bisacsh BUSINESS & ECONOMICS Management. bisacsh BUSINESS & ECONOMICS Management Science. bisacsh BUSINESS & ECONOMICS Organizational Behavior. bisacsh Business Data processing fast Electronic data processing fast Fuzzy systems fast |
topic_facet | Electronic data processing. Business Data processing. Fuzzy systems. Gestion Informatique. Systèmes flous. Neural networks & fuzzy systems. BUSINESS & ECONOMICS Industrial Management. BUSINESS & ECONOMICS Management. BUSINESS & ECONOMICS Management Science. BUSINESS & ECONOMICS Organizational Behavior. Business Data processing Electronic data processing Fuzzy systems |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2040570 |
work_keys_str_mv | AT huzhengbing selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions AT bodyanskiyyevgeniyv selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions AT tyshchenkooleksii selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions |