Big data analytics with SAS :: get actionable insights from your big data using the power of SAS /
Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you ... |
Beschreibung: | 1 online resource (1 volume) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781788294317 1788294319 1788290909 9781788290906 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-on1017990318 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 180105s2017 enka ob 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d TOH |d IDEBK |d STF |d OCLCF |d N$T |d CEF |d KSU |d DEBBG |d G3B |d S9I |d UAB |d SZR |d YDX |d K6U |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d DXU | ||
020 | |a 9781788294317 |q (electronic bk.) | ||
020 | |a 1788294319 |q (electronic bk.) | ||
020 | |a 1788290909 | ||
020 | |a 9781788290906 | ||
020 | |z 9781788290906 | ||
035 | |a (OCoLC)1017990318 | ||
037 | |a CL0500000923 |b Safari Books Online | ||
050 | 4 | |a QA276.4 | |
072 | 7 | |a COM |x 021040 |2 bisacsh | |
082 | 7 | |a 005.7 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Pope, David |c (SAS architecture expert), |e author. |0 http://id.loc.gov/authorities/names/no2019072971 | |
245 | 1 | 0 | |a Big data analytics with SAS : |b get actionable insights from your big data using the power of SAS / |c David Pope. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2017. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
588 | 0 | |a Online resource; title from title page (Safari, viewed January 3, 2018). | |
504 | |a Includes bibliographical references. | ||
520 | |a Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you ... | ||
505 | 0 | |a Cover -- Title Page -- Copyright -- Credits -- Foreword -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Dedication -- Table of Contents -- Preface -- Chapter 1: Setting Up the SAS® Software Environment -- What does SAS do? -- What is your perception of SAS? -- Let's get started with your free version of SAS -- History of SAS interfaces -- SAS Studio web-based GUI -- Describing the rest of SAS Studio -- SAS Studio section -- Server Files and Folders -- SAS Studio section -- Tasks and Utilities -- SAS Studio section -- Snippets -- SAS Studio section -- Libraries -- SAS Studio section -- File Shortcuts -- SAS programming language -- First SAS data step program -- First use of a SAS PROC -- Saving a SAS program -- Creating a new SAS program -- The AUTOEXEC file -- Visual Programmer versus SAS Programmer -- What's in the SAS® University Edition? -- Different levels of the SAS analytic platform -- SAS data storage -- The SAS dataset -- The SAS® Scalable Performance Data Engine -- The Scalable Performance Data Server -- SAS HDAT -- SAS formats and informats -- Date and time data -- Summary -- Chapter 2: Working with Data Using SAS® Software -- Preparing data for analytics -- Making data in SAS -- Data step code to make data -- PROC SQL to make data -- Working with external data -- Data step code for importing external data -- PROC IMPORT -- Referencing external files -- Directly referencing external files -- Indirectly referencing external files -- Specialty PROCs for working with external data -- PROC HADOOP and PROC HDMD -- PROC JSON -- Specialty PROCs for working with computer languages -- PROC GROOVY -- PROC LUA -- Summary -- Chapter 3: Data Preparation Using SAS Data Step and SAS Procedures -- Data preparation for analytics -- Creating indicators for the first and last observation in a by group -- Transposing. | |
505 | 8 | |a PROC TRANSPOSE -- SAS Studio Transpose Data task -- Statistical and mathematical data transformations -- PROC MEANS -- Imputation -- Identifying missing values -- Characterizing data -- List Table Attributes -- SAS macro facility -- Macro variables -- Macros -- Summary -- Chapter 4: Analysis with SAS® Software -- Analytics -- Descriptive and predictive analysis -- Descriptive analysis -- PROC FREQ -- PROC CORR -- PROC UNIVARIATE -- Predictive analysis -- Regression analysis -- PROC REG -- Forecasting analysis -- PROC TIMEDATA -- PROC ARIMA -- Optimization analysis -- SAS/IML -- Interacting with the R programming language -- PROC IML -- Summary -- Chapter 5: Reporting with SAS® Software -- Reporting -- SAS Studio tasks and snippets that generate reports and graphs -- BASE procedures designed for reporting -- TABULATE procedure examples -- REPORT procedure example -- The Output Delivery System -- ODS Tagsets -- ODS trace -- ODS document and the DOCUMENT procedure -- ODS Graphics -- How to make a user-defined snippet -- Summary -- Chapter 6: Other Programming Languages in BASE SAS® Software -- The DS2 programming language -- When to use DS2 -- How is DS2 similar to the data step? -- How are DS2 and DATA step different? -- Programming in DS2 -- DS2 methods -- DS2 system methods -- DS2 user-defined methods -- DS2 packages -- DS2 predefined packages -- DS2 user-defined packages -- Running DS2 programs -- The DS2 procedure -- DS2 Hello World program -- example 1 -- DS2 Hello World program -- example 2 -- DS2 Hello World program -- example 3 -- DS2 Hello World program -- example 4 -- DS2 Hello World program -- example 5 -- DS2 program with a method that returns a value -- DS2 program with a user-defined package -- The FedSQL programming language -- How to run FedSQL programs -- FedSQL program using the FEDSQL procedure -- Using FedSQL with DS -- Summary. | |
505 | 8 | |a Chapter 7: SAS® Software Engineers the Processing Environment for You -- Architecture -- The SAS platform -- Service-Oriented Architecture and microservices -- Differences between SOA and microservices -- SAS server versus a SAS grid -- In-database processing -- In-database procedures -- Additonal in-database processing SAS offerings -- SAS Scoring Accelerator -- SAS Code Accelerator -- In-memory processing -- SAS High-Performance Analytics Server -- SAS LASR Analytics Server -- SAS Cloud Analytics Server -- Dedicated hardware for in-memory processing -- Open platform and open source -- Running SAS from an iPython Jupyter Notebook -- SAS running in a cloud -- A public cloud -- A private cloud -- A hybrid cloud -- Running SAS processing outside the SAS platform -- The SAS Embedded Process -- The SAS Event Stream Processing engine -- SAS Viya the newest part of the SAS platform -- SAS Viya programming -- SAS Viya-based solutions -- Summary -- Chapter 8: Why SAS Programmers Love SAS -- Why SAS programmers love SAS -- Examples of why SAS programmers love SAS -- Additional coding examples -- The COMPARE procedure -- The OPTIONS procedure -- Analytics is a great career -- Analytics Center of Excellence -- The executive sponsor -- The data scientist -- The data manager -- The business analyst -- The ACE leader -- Where should an ACE be located? -- Analytics across industries -- Analytics improving healthcare -- Analytics improving government services -- Analytics in financial services -- Analytics in energy -- Analytics in manufacturing -- Analytics are great for society -- Project Data Sphere® -- SAS and Data4Good -- GatherIQ™ -- get involved in crowdsourcing to solve social issues -- References -- Summary -- Index. | |
630 | 0 | 0 | |a SAS (Computer file) |0 http://id.loc.gov/authorities/names/n88028236 |
630 | 0 | 7 | |a SAS (Computer file) |2 fast |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 0 | |a Decision making |x Statistical methods. | |
650 | 0 | |a Industrial management |x Statistical methods. | |
650 | 0 | |a Business planning. |0 http://id.loc.gov/authorities/subjects/sh85032906 | |
650 | 0 | |a Strategic planning. |0 http://id.loc.gov/authorities/subjects/sh85128511 | |
650 | 6 | |a Données volumineuses. | |
650 | 6 | |a Prise de décision |x Méthodes statistiques. | |
650 | 6 | |a Gestion d'entreprise |x Méthodes statistiques. | |
650 | 6 | |a Planification stratégique. | |
650 | 7 | |a COMPUTERS |x Databases |x Data Warehousing. |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Business planning |2 fast | |
650 | 7 | |a Decision making |x Statistical methods |2 fast | |
650 | 7 | |a Industrial management |x Statistical methods |2 fast | |
650 | 7 | |a Strategic planning |2 fast | |
758 | |i has work: |a Big data analytics with SAS (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGy46hjKgXkTkrHbDwDbcX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641407 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1641407 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis39239909 | ||
938 | |a YBP Library Services |b YANK |n 15009808 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-on1017990318 |
---|---|
_version_ | 1816796929390018560 |
adam_text | |
any_adam_object | |
author | Pope, David (SAS architecture expert) |
author_GND | http://id.loc.gov/authorities/names/no2019072971 |
author_facet | Pope, David (SAS architecture expert) |
author_role | aut |
author_sort | Pope, David (SAS architecture expert) |
author_variant | d p dp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.4 |
callnumber-search | QA276.4 |
callnumber-sort | QA 3276.4 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | Cover -- Title Page -- Copyright -- Credits -- Foreword -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Dedication -- Table of Contents -- Preface -- Chapter 1: Setting Up the SAS® Software Environment -- What does SAS do? -- What is your perception of SAS? -- Let's get started with your free version of SAS -- History of SAS interfaces -- SAS Studio web-based GUI -- Describing the rest of SAS Studio -- SAS Studio section -- Server Files and Folders -- SAS Studio section -- Tasks and Utilities -- SAS Studio section -- Snippets -- SAS Studio section -- Libraries -- SAS Studio section -- File Shortcuts -- SAS programming language -- First SAS data step program -- First use of a SAS PROC -- Saving a SAS program -- Creating a new SAS program -- The AUTOEXEC file -- Visual Programmer versus SAS Programmer -- What's in the SAS® University Edition? -- Different levels of the SAS analytic platform -- SAS data storage -- The SAS dataset -- The SAS® Scalable Performance Data Engine -- The Scalable Performance Data Server -- SAS HDAT -- SAS formats and informats -- Date and time data -- Summary -- Chapter 2: Working with Data Using SAS® Software -- Preparing data for analytics -- Making data in SAS -- Data step code to make data -- PROC SQL to make data -- Working with external data -- Data step code for importing external data -- PROC IMPORT -- Referencing external files -- Directly referencing external files -- Indirectly referencing external files -- Specialty PROCs for working with external data -- PROC HADOOP and PROC HDMD -- PROC JSON -- Specialty PROCs for working with computer languages -- PROC GROOVY -- PROC LUA -- Summary -- Chapter 3: Data Preparation Using SAS Data Step and SAS Procedures -- Data preparation for analytics -- Creating indicators for the first and last observation in a by group -- Transposing. PROC TRANSPOSE -- SAS Studio Transpose Data task -- Statistical and mathematical data transformations -- PROC MEANS -- Imputation -- Identifying missing values -- Characterizing data -- List Table Attributes -- SAS macro facility -- Macro variables -- Macros -- Summary -- Chapter 4: Analysis with SAS® Software -- Analytics -- Descriptive and predictive analysis -- Descriptive analysis -- PROC FREQ -- PROC CORR -- PROC UNIVARIATE -- Predictive analysis -- Regression analysis -- PROC REG -- Forecasting analysis -- PROC TIMEDATA -- PROC ARIMA -- Optimization analysis -- SAS/IML -- Interacting with the R programming language -- PROC IML -- Summary -- Chapter 5: Reporting with SAS® Software -- Reporting -- SAS Studio tasks and snippets that generate reports and graphs -- BASE procedures designed for reporting -- TABULATE procedure examples -- REPORT procedure example -- The Output Delivery System -- ODS Tagsets -- ODS trace -- ODS document and the DOCUMENT procedure -- ODS Graphics -- How to make a user-defined snippet -- Summary -- Chapter 6: Other Programming Languages in BASE SAS® Software -- The DS2 programming language -- When to use DS2 -- How is DS2 similar to the data step? -- How are DS2 and DATA step different? -- Programming in DS2 -- DS2 methods -- DS2 system methods -- DS2 user-defined methods -- DS2 packages -- DS2 predefined packages -- DS2 user-defined packages -- Running DS2 programs -- The DS2 procedure -- DS2 Hello World program -- example 1 -- DS2 Hello World program -- example 2 -- DS2 Hello World program -- example 3 -- DS2 Hello World program -- example 4 -- DS2 Hello World program -- example 5 -- DS2 program with a method that returns a value -- DS2 program with a user-defined package -- The FedSQL programming language -- How to run FedSQL programs -- FedSQL program using the FEDSQL procedure -- Using FedSQL with DS -- Summary. Chapter 7: SAS® Software Engineers the Processing Environment for You -- Architecture -- The SAS platform -- Service-Oriented Architecture and microservices -- Differences between SOA and microservices -- SAS server versus a SAS grid -- In-database processing -- In-database procedures -- Additonal in-database processing SAS offerings -- SAS Scoring Accelerator -- SAS Code Accelerator -- In-memory processing -- SAS High-Performance Analytics Server -- SAS LASR Analytics Server -- SAS Cloud Analytics Server -- Dedicated hardware for in-memory processing -- Open platform and open source -- Running SAS from an iPython Jupyter Notebook -- SAS running in a cloud -- A public cloud -- A private cloud -- A hybrid cloud -- Running SAS processing outside the SAS platform -- The SAS Embedded Process -- The SAS Event Stream Processing engine -- SAS Viya the newest part of the SAS platform -- SAS Viya programming -- SAS Viya-based solutions -- Summary -- Chapter 8: Why SAS Programmers Love SAS -- Why SAS programmers love SAS -- Examples of why SAS programmers love SAS -- Additional coding examples -- The COMPARE procedure -- The OPTIONS procedure -- Analytics is a great career -- Analytics Center of Excellence -- The executive sponsor -- The data scientist -- The data manager -- The business analyst -- The ACE leader -- Where should an ACE be located? -- Analytics across industries -- Analytics improving healthcare -- Analytics improving government services -- Analytics in financial services -- Analytics in energy -- Analytics in manufacturing -- Analytics are great for society -- Project Data Sphere® -- SAS and Data4Good -- GatherIQ™ -- get involved in crowdsourcing to solve social issues -- References -- Summary -- Index. |
ctrlnum | (OCoLC)1017990318 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10941cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBU-on1017990318</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">180105s2017 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">TOH</subfield><subfield code="d">IDEBK</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">DEBBG</subfield><subfield code="d">G3B</subfield><subfield code="d">S9I</subfield><subfield code="d">UAB</subfield><subfield code="d">SZR</subfield><subfield code="d">YDX</subfield><subfield code="d">K6U</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">DXU</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788294317</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788294319</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788290909</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788290906</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781788290906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1017990318</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000923</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA276.4</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">021040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pope, David</subfield><subfield code="c">(SAS architecture expert),</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2019072971</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data analytics with SAS :</subfield><subfield code="b">get actionable insights from your big data using the power of SAS /</subfield><subfield code="c">David Pope.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed January 3, 2018).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you ...</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Credits -- Foreword -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Dedication -- Table of Contents -- Preface -- Chapter 1: Setting Up the SAS® Software Environment -- What does SAS do? -- What is your perception of SAS? -- Let's get started with your free version of SAS -- History of SAS interfaces -- SAS Studio web-based GUI -- Describing the rest of SAS Studio -- SAS Studio section -- Server Files and Folders -- SAS Studio section -- Tasks and Utilities -- SAS Studio section -- Snippets -- SAS Studio section -- Libraries -- SAS Studio section -- File Shortcuts -- SAS programming language -- First SAS data step program -- First use of a SAS PROC -- Saving a SAS program -- Creating a new SAS program -- The AUTOEXEC file -- Visual Programmer versus SAS Programmer -- What's in the SAS® University Edition? -- Different levels of the SAS analytic platform -- SAS data storage -- The SAS dataset -- The SAS® Scalable Performance Data Engine -- The Scalable Performance Data Server -- SAS HDAT -- SAS formats and informats -- Date and time data -- Summary -- Chapter 2: Working with Data Using SAS® Software -- Preparing data for analytics -- Making data in SAS -- Data step code to make data -- PROC SQL to make data -- Working with external data -- Data step code for importing external data -- PROC IMPORT -- Referencing external files -- Directly referencing external files -- Indirectly referencing external files -- Specialty PROCs for working with external data -- PROC HADOOP and PROC HDMD -- PROC JSON -- Specialty PROCs for working with computer languages -- PROC GROOVY -- PROC LUA -- Summary -- Chapter 3: Data Preparation Using SAS Data Step and SAS Procedures -- Data preparation for analytics -- Creating indicators for the first and last observation in a by group -- Transposing.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">PROC TRANSPOSE -- SAS Studio Transpose Data task -- Statistical and mathematical data transformations -- PROC MEANS -- Imputation -- Identifying missing values -- Characterizing data -- List Table Attributes -- SAS macro facility -- Macro variables -- Macros -- Summary -- Chapter 4: Analysis with SAS® Software -- Analytics -- Descriptive and predictive analysis -- Descriptive analysis -- PROC FREQ -- PROC CORR -- PROC UNIVARIATE -- Predictive analysis -- Regression analysis -- PROC REG -- Forecasting analysis -- PROC TIMEDATA -- PROC ARIMA -- Optimization analysis -- SAS/IML -- Interacting with the R programming language -- PROC IML -- Summary -- Chapter 5: Reporting with SAS® Software -- Reporting -- SAS Studio tasks and snippets that generate reports and graphs -- BASE procedures designed for reporting -- TABULATE procedure examples -- REPORT procedure example -- The Output Delivery System -- ODS Tagsets -- ODS trace -- ODS document and the DOCUMENT procedure -- ODS Graphics -- How to make a user-defined snippet -- Summary -- Chapter 6: Other Programming Languages in BASE SAS® Software -- The DS2 programming language -- When to use DS2 -- How is DS2 similar to the data step? -- How are DS2 and DATA step different? -- Programming in DS2 -- DS2 methods -- DS2 system methods -- DS2 user-defined methods -- DS2 packages -- DS2 predefined packages -- DS2 user-defined packages -- Running DS2 programs -- The DS2 procedure -- DS2 Hello World program -- example 1 -- DS2 Hello World program -- example 2 -- DS2 Hello World program -- example 3 -- DS2 Hello World program -- example 4 -- DS2 Hello World program -- example 5 -- DS2 program with a method that returns a value -- DS2 program with a user-defined package -- The FedSQL programming language -- How to run FedSQL programs -- FedSQL program using the FEDSQL procedure -- Using FedSQL with DS -- Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7: SAS® Software Engineers the Processing Environment for You -- Architecture -- The SAS platform -- Service-Oriented Architecture and microservices -- Differences between SOA and microservices -- SAS server versus a SAS grid -- In-database processing -- In-database procedures -- Additonal in-database processing SAS offerings -- SAS Scoring Accelerator -- SAS Code Accelerator -- In-memory processing -- SAS High-Performance Analytics Server -- SAS LASR Analytics Server -- SAS Cloud Analytics Server -- Dedicated hardware for in-memory processing -- Open platform and open source -- Running SAS from an iPython Jupyter Notebook -- SAS running in a cloud -- A public cloud -- A private cloud -- A hybrid cloud -- Running SAS processing outside the SAS platform -- The SAS Embedded Process -- The SAS Event Stream Processing engine -- SAS Viya the newest part of the SAS platform -- SAS Viya programming -- SAS Viya-based solutions -- Summary -- Chapter 8: Why SAS Programmers Love SAS -- Why SAS programmers love SAS -- Examples of why SAS programmers love SAS -- Additional coding examples -- The COMPARE procedure -- The OPTIONS procedure -- Analytics is a great career -- Analytics Center of Excellence -- The executive sponsor -- The data scientist -- The data manager -- The business analyst -- The ACE leader -- Where should an ACE be located? -- Analytics across industries -- Analytics improving healthcare -- Analytics improving government services -- Analytics in financial services -- Analytics in energy -- Analytics in manufacturing -- Analytics are great for society -- Project Data Sphere® -- SAS and Data4Good -- GatherIQ™ -- get involved in crowdsourcing to solve social issues -- References -- Summary -- Index.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">SAS (Computer file)</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88028236</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">SAS (Computer file)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Decision making</subfield><subfield code="x">Statistical methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Industrial management</subfield><subfield code="x">Statistical methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business planning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85032906</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Strategic planning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128511</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Prise de décision</subfield><subfield code="x">Méthodes statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Gestion d'entreprise</subfield><subfield code="x">Méthodes statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Planification stratégique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Databases</subfield><subfield code="x">Data Warehousing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Business planning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Decision making</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Industrial management</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strategic planning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Big data analytics with SAS (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGy46hjKgXkTkrHbDwDbcX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641407</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1641407</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis39239909</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15009808</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-on1017990318 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:29Z |
institution | BVB |
isbn | 9781788294317 1788294319 1788290909 9781788290906 |
language | English |
oclc_num | 1017990318 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Pope, David (SAS architecture expert), author. http://id.loc.gov/authorities/names/no2019072971 Big data analytics with SAS : get actionable insights from your big data using the power of SAS / David Pope. Birmingham, UK : Packt Publishing, 2017. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Online resource; title from title page (Safari, viewed January 3, 2018). Includes bibliographical references. Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you ... Cover -- Title Page -- Copyright -- Credits -- Foreword -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Dedication -- Table of Contents -- Preface -- Chapter 1: Setting Up the SAS® Software Environment -- What does SAS do? -- What is your perception of SAS? -- Let's get started with your free version of SAS -- History of SAS interfaces -- SAS Studio web-based GUI -- Describing the rest of SAS Studio -- SAS Studio section -- Server Files and Folders -- SAS Studio section -- Tasks and Utilities -- SAS Studio section -- Snippets -- SAS Studio section -- Libraries -- SAS Studio section -- File Shortcuts -- SAS programming language -- First SAS data step program -- First use of a SAS PROC -- Saving a SAS program -- Creating a new SAS program -- The AUTOEXEC file -- Visual Programmer versus SAS Programmer -- What's in the SAS® University Edition? -- Different levels of the SAS analytic platform -- SAS data storage -- The SAS dataset -- The SAS® Scalable Performance Data Engine -- The Scalable Performance Data Server -- SAS HDAT -- SAS formats and informats -- Date and time data -- Summary -- Chapter 2: Working with Data Using SAS® Software -- Preparing data for analytics -- Making data in SAS -- Data step code to make data -- PROC SQL to make data -- Working with external data -- Data step code for importing external data -- PROC IMPORT -- Referencing external files -- Directly referencing external files -- Indirectly referencing external files -- Specialty PROCs for working with external data -- PROC HADOOP and PROC HDMD -- PROC JSON -- Specialty PROCs for working with computer languages -- PROC GROOVY -- PROC LUA -- Summary -- Chapter 3: Data Preparation Using SAS Data Step and SAS Procedures -- Data preparation for analytics -- Creating indicators for the first and last observation in a by group -- Transposing. PROC TRANSPOSE -- SAS Studio Transpose Data task -- Statistical and mathematical data transformations -- PROC MEANS -- Imputation -- Identifying missing values -- Characterizing data -- List Table Attributes -- SAS macro facility -- Macro variables -- Macros -- Summary -- Chapter 4: Analysis with SAS® Software -- Analytics -- Descriptive and predictive analysis -- Descriptive analysis -- PROC FREQ -- PROC CORR -- PROC UNIVARIATE -- Predictive analysis -- Regression analysis -- PROC REG -- Forecasting analysis -- PROC TIMEDATA -- PROC ARIMA -- Optimization analysis -- SAS/IML -- Interacting with the R programming language -- PROC IML -- Summary -- Chapter 5: Reporting with SAS® Software -- Reporting -- SAS Studio tasks and snippets that generate reports and graphs -- BASE procedures designed for reporting -- TABULATE procedure examples -- REPORT procedure example -- The Output Delivery System -- ODS Tagsets -- ODS trace -- ODS document and the DOCUMENT procedure -- ODS Graphics -- How to make a user-defined snippet -- Summary -- Chapter 6: Other Programming Languages in BASE SAS® Software -- The DS2 programming language -- When to use DS2 -- How is DS2 similar to the data step? -- How are DS2 and DATA step different? -- Programming in DS2 -- DS2 methods -- DS2 system methods -- DS2 user-defined methods -- DS2 packages -- DS2 predefined packages -- DS2 user-defined packages -- Running DS2 programs -- The DS2 procedure -- DS2 Hello World program -- example 1 -- DS2 Hello World program -- example 2 -- DS2 Hello World program -- example 3 -- DS2 Hello World program -- example 4 -- DS2 Hello World program -- example 5 -- DS2 program with a method that returns a value -- DS2 program with a user-defined package -- The FedSQL programming language -- How to run FedSQL programs -- FedSQL program using the FEDSQL procedure -- Using FedSQL with DS -- Summary. Chapter 7: SAS® Software Engineers the Processing Environment for You -- Architecture -- The SAS platform -- Service-Oriented Architecture and microservices -- Differences between SOA and microservices -- SAS server versus a SAS grid -- In-database processing -- In-database procedures -- Additonal in-database processing SAS offerings -- SAS Scoring Accelerator -- SAS Code Accelerator -- In-memory processing -- SAS High-Performance Analytics Server -- SAS LASR Analytics Server -- SAS Cloud Analytics Server -- Dedicated hardware for in-memory processing -- Open platform and open source -- Running SAS from an iPython Jupyter Notebook -- SAS running in a cloud -- A public cloud -- A private cloud -- A hybrid cloud -- Running SAS processing outside the SAS platform -- The SAS Embedded Process -- The SAS Event Stream Processing engine -- SAS Viya the newest part of the SAS platform -- SAS Viya programming -- SAS Viya-based solutions -- Summary -- Chapter 8: Why SAS Programmers Love SAS -- Why SAS programmers love SAS -- Examples of why SAS programmers love SAS -- Additional coding examples -- The COMPARE procedure -- The OPTIONS procedure -- Analytics is a great career -- Analytics Center of Excellence -- The executive sponsor -- The data scientist -- The data manager -- The business analyst -- The ACE leader -- Where should an ACE be located? -- Analytics across industries -- Analytics improving healthcare -- Analytics improving government services -- Analytics in financial services -- Analytics in energy -- Analytics in manufacturing -- Analytics are great for society -- Project Data Sphere® -- SAS and Data4Good -- GatherIQ™ -- get involved in crowdsourcing to solve social issues -- References -- Summary -- Index. SAS (Computer file) http://id.loc.gov/authorities/names/n88028236 SAS (Computer file) fast Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Decision making Statistical methods. Industrial management Statistical methods. Business planning. http://id.loc.gov/authorities/subjects/sh85032906 Strategic planning. http://id.loc.gov/authorities/subjects/sh85128511 Données volumineuses. Prise de décision Méthodes statistiques. Gestion d'entreprise Méthodes statistiques. Planification stratégique. COMPUTERS Databases Data Warehousing. bisacsh Big data fast Business planning fast Decision making Statistical methods fast Industrial management Statistical methods fast Strategic planning fast has work: Big data analytics with SAS (Text) https://id.oclc.org/worldcat/entity/E39PCGy46hjKgXkTkrHbDwDbcX https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641407 Volltext |
spellingShingle | Pope, David (SAS architecture expert) Big data analytics with SAS : get actionable insights from your big data using the power of SAS / Cover -- Title Page -- Copyright -- Credits -- Foreword -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Dedication -- Table of Contents -- Preface -- Chapter 1: Setting Up the SAS® Software Environment -- What does SAS do? -- What is your perception of SAS? -- Let's get started with your free version of SAS -- History of SAS interfaces -- SAS Studio web-based GUI -- Describing the rest of SAS Studio -- SAS Studio section -- Server Files and Folders -- SAS Studio section -- Tasks and Utilities -- SAS Studio section -- Snippets -- SAS Studio section -- Libraries -- SAS Studio section -- File Shortcuts -- SAS programming language -- First SAS data step program -- First use of a SAS PROC -- Saving a SAS program -- Creating a new SAS program -- The AUTOEXEC file -- Visual Programmer versus SAS Programmer -- What's in the SAS® University Edition? -- Different levels of the SAS analytic platform -- SAS data storage -- The SAS dataset -- The SAS® Scalable Performance Data Engine -- The Scalable Performance Data Server -- SAS HDAT -- SAS formats and informats -- Date and time data -- Summary -- Chapter 2: Working with Data Using SAS® Software -- Preparing data for analytics -- Making data in SAS -- Data step code to make data -- PROC SQL to make data -- Working with external data -- Data step code for importing external data -- PROC IMPORT -- Referencing external files -- Directly referencing external files -- Indirectly referencing external files -- Specialty PROCs for working with external data -- PROC HADOOP and PROC HDMD -- PROC JSON -- Specialty PROCs for working with computer languages -- PROC GROOVY -- PROC LUA -- Summary -- Chapter 3: Data Preparation Using SAS Data Step and SAS Procedures -- Data preparation for analytics -- Creating indicators for the first and last observation in a by group -- Transposing. PROC TRANSPOSE -- SAS Studio Transpose Data task -- Statistical and mathematical data transformations -- PROC MEANS -- Imputation -- Identifying missing values -- Characterizing data -- List Table Attributes -- SAS macro facility -- Macro variables -- Macros -- Summary -- Chapter 4: Analysis with SAS® Software -- Analytics -- Descriptive and predictive analysis -- Descriptive analysis -- PROC FREQ -- PROC CORR -- PROC UNIVARIATE -- Predictive analysis -- Regression analysis -- PROC REG -- Forecasting analysis -- PROC TIMEDATA -- PROC ARIMA -- Optimization analysis -- SAS/IML -- Interacting with the R programming language -- PROC IML -- Summary -- Chapter 5: Reporting with SAS® Software -- Reporting -- SAS Studio tasks and snippets that generate reports and graphs -- BASE procedures designed for reporting -- TABULATE procedure examples -- REPORT procedure example -- The Output Delivery System -- ODS Tagsets -- ODS trace -- ODS document and the DOCUMENT procedure -- ODS Graphics -- How to make a user-defined snippet -- Summary -- Chapter 6: Other Programming Languages in BASE SAS® Software -- The DS2 programming language -- When to use DS2 -- How is DS2 similar to the data step? -- How are DS2 and DATA step different? -- Programming in DS2 -- DS2 methods -- DS2 system methods -- DS2 user-defined methods -- DS2 packages -- DS2 predefined packages -- DS2 user-defined packages -- Running DS2 programs -- The DS2 procedure -- DS2 Hello World program -- example 1 -- DS2 Hello World program -- example 2 -- DS2 Hello World program -- example 3 -- DS2 Hello World program -- example 4 -- DS2 Hello World program -- example 5 -- DS2 program with a method that returns a value -- DS2 program with a user-defined package -- The FedSQL programming language -- How to run FedSQL programs -- FedSQL program using the FEDSQL procedure -- Using FedSQL with DS -- Summary. Chapter 7: SAS® Software Engineers the Processing Environment for You -- Architecture -- The SAS platform -- Service-Oriented Architecture and microservices -- Differences between SOA and microservices -- SAS server versus a SAS grid -- In-database processing -- In-database procedures -- Additonal in-database processing SAS offerings -- SAS Scoring Accelerator -- SAS Code Accelerator -- In-memory processing -- SAS High-Performance Analytics Server -- SAS LASR Analytics Server -- SAS Cloud Analytics Server -- Dedicated hardware for in-memory processing -- Open platform and open source -- Running SAS from an iPython Jupyter Notebook -- SAS running in a cloud -- A public cloud -- A private cloud -- A hybrid cloud -- Running SAS processing outside the SAS platform -- The SAS Embedded Process -- The SAS Event Stream Processing engine -- SAS Viya the newest part of the SAS platform -- SAS Viya programming -- SAS Viya-based solutions -- Summary -- Chapter 8: Why SAS Programmers Love SAS -- Why SAS programmers love SAS -- Examples of why SAS programmers love SAS -- Additional coding examples -- The COMPARE procedure -- The OPTIONS procedure -- Analytics is a great career -- Analytics Center of Excellence -- The executive sponsor -- The data scientist -- The data manager -- The business analyst -- The ACE leader -- Where should an ACE be located? -- Analytics across industries -- Analytics improving healthcare -- Analytics improving government services -- Analytics in financial services -- Analytics in energy -- Analytics in manufacturing -- Analytics are great for society -- Project Data Sphere® -- SAS and Data4Good -- GatherIQ™ -- get involved in crowdsourcing to solve social issues -- References -- Summary -- Index. SAS (Computer file) http://id.loc.gov/authorities/names/n88028236 SAS (Computer file) fast Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Decision making Statistical methods. Industrial management Statistical methods. Business planning. http://id.loc.gov/authorities/subjects/sh85032906 Strategic planning. http://id.loc.gov/authorities/subjects/sh85128511 Données volumineuses. Prise de décision Méthodes statistiques. Gestion d'entreprise Méthodes statistiques. Planification stratégique. COMPUTERS Databases Data Warehousing. bisacsh Big data fast Business planning fast Decision making Statistical methods fast Industrial management Statistical methods fast Strategic planning fast |
subject_GND | http://id.loc.gov/authorities/names/n88028236 http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/subjects/sh85032906 http://id.loc.gov/authorities/subjects/sh85128511 |
title | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / |
title_auth | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / |
title_exact_search | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / |
title_full | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / David Pope. |
title_fullStr | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / David Pope. |
title_full_unstemmed | Big data analytics with SAS : get actionable insights from your big data using the power of SAS / David Pope. |
title_short | Big data analytics with SAS : |
title_sort | big data analytics with sas get actionable insights from your big data using the power of sas |
title_sub | get actionable insights from your big data using the power of SAS / |
topic | SAS (Computer file) http://id.loc.gov/authorities/names/n88028236 SAS (Computer file) fast Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Decision making Statistical methods. Industrial management Statistical methods. Business planning. http://id.loc.gov/authorities/subjects/sh85032906 Strategic planning. http://id.loc.gov/authorities/subjects/sh85128511 Données volumineuses. Prise de décision Méthodes statistiques. Gestion d'entreprise Méthodes statistiques. Planification stratégique. COMPUTERS Databases Data Warehousing. bisacsh Big data fast Business planning fast Decision making Statistical methods fast Industrial management Statistical methods fast Strategic planning fast |
topic_facet | SAS (Computer file) Big data. Decision making Statistical methods. Industrial management Statistical methods. Business planning. Strategic planning. Données volumineuses. Prise de décision Méthodes statistiques. Gestion d'entreprise Méthodes statistiques. Planification stratégique. COMPUTERS Databases Data Warehousing. Big data Business planning Decision making Statistical methods Industrial management Statistical methods Strategic planning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641407 |
work_keys_str_mv | AT popedavid bigdataanalyticswithsasgetactionableinsightsfromyourbigdatausingthepowerofsas |