Data analysis with IBM SPSS Statistics :: implementing data modeling, descriptive statistics and ANOVA /
Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ... |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781787280700 1787280705 178728381X 9781787283817 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-on1005899002 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 171011s2017 enka o 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d STF |d IDEBK |d OCLCF |d N$T |d SNM |d VT2 |d UOK |d CEF |d KSU |d NLE |d UKMGB |d WYU |d C6I |d UAB |d UKAHL |d K6U |d QGK |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d DXU | ||
015 | |a GBB7L7658 |2 bnb | ||
016 | 7 | |a 018554446 |2 Uk | |
020 | |a 9781787280700 |q (electronic bk.) | ||
020 | |a 1787280705 |q (electronic bk.) | ||
020 | |a 178728381X | ||
020 | |a 9781787283817 | ||
020 | |z 9781787283817 | ||
035 | |a (OCoLC)1005899002 | ||
037 | |a CL0500000901 |b Safari Books Online | ||
050 | 4 | |a H32 |b .S74 2017 | |
072 | 7 | |a COM |x 077000 |2 bisacsh | |
082 | 7 | |a 005.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Stehlik-Barry, Kenneth, |e author. |0 http://id.loc.gov/authorities/names/n95116907 | |
245 | 1 | 0 | |a Data analysis with IBM SPSS Statistics : |b implementing data modeling, descriptive statistics and ANOVA / |c Kenneth Stehlik-Barry, Anthony J. Babinec. |
246 | 3 | |a Data analysis with International Business Machines statistical package for the social sciences statistics | |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2017. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed February 16, 2018) | |
520 | |a Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ... | ||
505 | 0 | |a Intro -- Copyright -- Credits -- About the Authors -- Acknowledgement -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Installing and Configuring SPSS -- The SPSS installation utility -- Installing Python for the scripting -- Licensing SPSS -- Confirming the options available -- Launching and using SPSS -- Setting parameters within the SPSS software -- Executing a basic SPSS session -- Summary -- Chapter 2: Accessing and Organizing Data -- Accessing and organizing data overview -- Reading Excel files -- Reading delimited text data files -- Saving IBM SPSS Statistics files -- Reading IBM SPSS Statistics files -- Demo -- first look at the data -- frequencies -- Variable properties -- Variable properties -- name -- Variable properties -- type -- Variable properties -- width -- Variable properties -- decimals -- Variable properties -- label -- Variable properties -- values -- Variable properties -- missing -- Variable properties -- columns -- Variable properties -- align -- Variable properties -- measure -- Variable properties -- role -- Demo -- adding variable properties to the Variable View -- Demo -- adding variable properties via syntax -- Demo -- defining variable properties -- Summary -- Chapter 3: Statistics for Individual Data Elements -- Getting the sample data -- Descriptiveamp -- #160 -- statistics for numeric fields -- Controlling the descriptives display order -- Frequency distributions -- Discovering coding issues using frequencies -- Using frequencies to verify missing data patterns -- Exploreamp -- #160 -- procedure -- Stem and leaf plot -- Boxplot -- Using explore to check subgroup patterns -- Summary -- Chapter 4: Dealing with Missing Data and Outliers -- Outliers -- Frequencies for histogram and percentile values -- Descriptives for standardized scores. | |
505 | 8 | |a The Examine procedure for extreme values and boxplot -- Detecting multivariate outliers -- Missing data -- Missing values in Frequencies -- Missing values in Descriptives -- Missing value patterns -- Replacing missing values -- Summary -- Chapter 5: Visually Exploring the Data -- Graphs available in SPSS procedures -- Obtaining bar charts with frequencies -- Obtaining a histogram with frequencies -- Creating graphs using chart builder -- Building a scatterplot -- Create a boxplot using chart builder -- Summary -- Chapter 6: Sampling, Subsetting, and Weighting -- Select cases dialog box -- Select cases -- If condition is satisfied -- Example -- If condition is satisfied combined with Filter -- If condition is satisfied combined with Copy -- If condition is satisfied combined with Delete unselected cases -- The Temporary command -- Select cases based on time or case range -- Using the filter variable -- Selecting a random sample of cases -- Split File -- Weighting -- Summary -- Chapter 7: Creating New Data Elements -- Transforming fields in SPSS -- The RECODE command -- Creating a dummy variable using RECODE -- Using RECODE to rescale a field -- Respondent's income using the midpoint of a selected category -- The COMPUTE command -- The IF command -- The DO IF/ELSE IF command -- General points regarding SPSS transformation commands -- Summary -- Chapter 8: Adding and Matching Files -- SPSS Statistics commands to merge files -- Example of one-to-many merge -- Northwind database -- Customer table -- Orders table -- The Customer-Orders relationship -- SPSS code for a one-to-many merge -- Alternate SPSS code -- One-to-one merge -- twoamp -- #160 -- data subsets from GSS2016 -- Example of combining cases using ADD FILES -- Summary -- Chapter 9: Aggregating and Restructuring Data -- Using aggregation to add fields to a file. | |
505 | 8 | |a Using aggregated variables to create new fields -- Aggregating up one level -- Preparing the data for aggregation -- Second level aggregation -- Preparing aggregated data for further use -- Matching the aggregated file back to find specific records -- Restructuring rows to columns -- Patient test data example -- Performing calculations following data restructuring -- Summary -- Chapter 10: Crosstabulation Patterns for Categorical Data -- Percentages in crosstabs -- Testing differences in column proportions -- Crosstab pivot table editing -- Adding a layer variable -- Adding a second layer -- Using a Chi-square test with crosstabs -- Expected counts -- Context sensitive help -- Ordinal measures of association -- Interval with nominal association measure -- Nominal measures of association -- Summary -- Chapter 11: Comparing Means and ANOVA -- SPSS procedures for comparing Means -- The Means procedure -- Adding a second variableamp -- #160 -- Test of linearity example -- Testing the strength of the nonlinear relationship -- Single sample t-test -- The independent samples t-test -- Homogeneity of variance test -- Comparing subsets -- Paired t-test -- Paired t-test split by gender -- One-way analysis of variance -- Brown-Forsythe and Welch statistics -- Planned comparisons -- Post hoc comparisons -- The ANOVA procedure -- Summary -- Chapter 12: Correlations -- Pearson correlations -- Testing for significance -- Mean differences versus correlations -- Listwise versus pairwise missing values -- Comparing pairwise and listwise correlation matrices -- Pivoting table editing to enhance correlation matrices -- Creating a very trimmed matrix -- Visualizing correlations with scatterplots -- Rank order correlations -- Partial correlations -- Adding a second control variable -- Summary -- Chapter 13: Linear Regression. | |
505 | 8 | |a Assumptions of the classical linear regression model -- Example -- motor trendamp -- #160 -- car data -- Exploring associations between the target and predictors -- Fitting and interpreting a simple regression model -- Residual analysis for the simple regression model -- Saving and interpreting casewise diagnostics -- Multiple regression -- Model-building strategies -- Summary -- Chapter 14: Principal Components and Factor Analysis -- Choosing between principal components analysis and factor analysis -- PCA example -- violent crimes -- Simple descriptive analysis -- SPSS code -- principal components analysis -- Assessing factorability of the data -- Principal components analysis of the crime variables -- Principal component analysis -- two-component solution -- Factor analysis -- abilities -- The reduced correlation matrix and its eigenvalues -- Factor analysis code -- Factor analysis results -- Summary -- Chapter 15: Clustering -- Overview of cluster analysis -- Overview of SPSS Statistics cluster analysisamp -- #160 -- procedures -- Hierarchical cluster analysis example -- Descriptive analysis -- Cluster analysis -- first attempt -- Cluster analysis with four clusters -- K-means cluster analysis example -- Descriptive analysis -- K-means cluster analysis of the Old Faithful data -- Further cluster profiling -- Other analyses to try -- Twostep cluster analysis example -- Summary -- Chapter 16: Discriminant Analysis -- Descriptive discriminant analysis -- Predictive discriminant analysis -- Assumptions underlying discriminant analysis -- Example data -- Statistical and graphical summary of the data -- Discriminant analysis setup -- key decisions -- Priors -- Pooled or separate -- Dimensionality -- Syntax for the wine example -- Examining the results -- Scoring new observations -- Summary -- Index. | |
630 | 0 | 0 | |a SPSS (Computer file) |0 http://id.loc.gov/authorities/names/n88224991 |
630 | 0 | 7 | |a SPSS (Computer file) |2 fast |
650 | 0 | |a Statistics |x Computer programs. |0 http://id.loc.gov/authorities/subjects/sh85127582 | |
650 | 6 | |a Statistique |x Logiciels. | |
650 | 7 | |a COMPUTERS |x Mathematical & Statistical Software. |2 bisacsh | |
650 | 7 | |a Statistics |x Computer programs |2 fast | |
700 | 1 | |a Babinec, Anthony J., |e author. |0 http://id.loc.gov/authorities/names/no2018007096 | |
758 | |i has work: |a Data analysis with IBM SPSS Statistics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG8mYxPFKrymKG38rGF9Xd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Stehlik-Barry, Kenneth. |t Data analysis with IBM SPSS statistics : implementing data modeling, descriptive statistics and ANOVA. |d Birmingham, England ; Mumbai, India : Packt Publishing, 2017 |z 9781787283817 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1606539 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0035134772 | ||
938 | |a EBSCOhost |b EBSC |n 1606539 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis39007131 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-on1005899002 |
---|---|
_version_ | 1816796928766115840 |
adam_text | |
any_adam_object | |
author | Stehlik-Barry, Kenneth Babinec, Anthony J. |
author_GND | http://id.loc.gov/authorities/names/n95116907 http://id.loc.gov/authorities/names/no2018007096 |
author_facet | Stehlik-Barry, Kenneth Babinec, Anthony J. |
author_role | aut aut |
author_sort | Stehlik-Barry, Kenneth |
author_variant | k s b ksb a j b aj ajb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | H32 |
callnumber-raw | H32 .S74 2017 |
callnumber-search | H32 .S74 2017 |
callnumber-sort | H 232 S74 42017 |
callnumber-subject | H - Social Science |
collection | ZDB-4-EBU |
contents | Intro -- Copyright -- Credits -- About the Authors -- Acknowledgement -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Installing and Configuring SPSS -- The SPSS installation utility -- Installing Python for the scripting -- Licensing SPSS -- Confirming the options available -- Launching and using SPSS -- Setting parameters within the SPSS software -- Executing a basic SPSS session -- Summary -- Chapter 2: Accessing and Organizing Data -- Accessing and organizing data overview -- Reading Excel files -- Reading delimited text data files -- Saving IBM SPSS Statistics files -- Reading IBM SPSS Statistics files -- Demo -- first look at the data -- frequencies -- Variable properties -- Variable properties -- name -- Variable properties -- type -- Variable properties -- width -- Variable properties -- decimals -- Variable properties -- label -- Variable properties -- values -- Variable properties -- missing -- Variable properties -- columns -- Variable properties -- align -- Variable properties -- measure -- Variable properties -- role -- Demo -- adding variable properties to the Variable View -- Demo -- adding variable properties via syntax -- Demo -- defining variable properties -- Summary -- Chapter 3: Statistics for Individual Data Elements -- Getting the sample data -- Descriptiveamp -- #160 -- statistics for numeric fields -- Controlling the descriptives display order -- Frequency distributions -- Discovering coding issues using frequencies -- Using frequencies to verify missing data patterns -- Exploreamp -- #160 -- procedure -- Stem and leaf plot -- Boxplot -- Using explore to check subgroup patterns -- Summary -- Chapter 4: Dealing with Missing Data and Outliers -- Outliers -- Frequencies for histogram and percentile values -- Descriptives for standardized scores. The Examine procedure for extreme values and boxplot -- Detecting multivariate outliers -- Missing data -- Missing values in Frequencies -- Missing values in Descriptives -- Missing value patterns -- Replacing missing values -- Summary -- Chapter 5: Visually Exploring the Data -- Graphs available in SPSS procedures -- Obtaining bar charts with frequencies -- Obtaining a histogram with frequencies -- Creating graphs using chart builder -- Building a scatterplot -- Create a boxplot using chart builder -- Summary -- Chapter 6: Sampling, Subsetting, and Weighting -- Select cases dialog box -- Select cases -- If condition is satisfied -- Example -- If condition is satisfied combined with Filter -- If condition is satisfied combined with Copy -- If condition is satisfied combined with Delete unselected cases -- The Temporary command -- Select cases based on time or case range -- Using the filter variable -- Selecting a random sample of cases -- Split File -- Weighting -- Summary -- Chapter 7: Creating New Data Elements -- Transforming fields in SPSS -- The RECODE command -- Creating a dummy variable using RECODE -- Using RECODE to rescale a field -- Respondent's income using the midpoint of a selected category -- The COMPUTE command -- The IF command -- The DO IF/ELSE IF command -- General points regarding SPSS transformation commands -- Summary -- Chapter 8: Adding and Matching Files -- SPSS Statistics commands to merge files -- Example of one-to-many merge -- Northwind database -- Customer table -- Orders table -- The Customer-Orders relationship -- SPSS code for a one-to-many merge -- Alternate SPSS code -- One-to-one merge -- twoamp -- #160 -- data subsets from GSS2016 -- Example of combining cases using ADD FILES -- Summary -- Chapter 9: Aggregating and Restructuring Data -- Using aggregation to add fields to a file. Using aggregated variables to create new fields -- Aggregating up one level -- Preparing the data for aggregation -- Second level aggregation -- Preparing aggregated data for further use -- Matching the aggregated file back to find specific records -- Restructuring rows to columns -- Patient test data example -- Performing calculations following data restructuring -- Summary -- Chapter 10: Crosstabulation Patterns for Categorical Data -- Percentages in crosstabs -- Testing differences in column proportions -- Crosstab pivot table editing -- Adding a layer variable -- Adding a second layer -- Using a Chi-square test with crosstabs -- Expected counts -- Context sensitive help -- Ordinal measures of association -- Interval with nominal association measure -- Nominal measures of association -- Summary -- Chapter 11: Comparing Means and ANOVA -- SPSS procedures for comparing Means -- The Means procedure -- Adding a second variableamp -- #160 -- Test of linearity example -- Testing the strength of the nonlinear relationship -- Single sample t-test -- The independent samples t-test -- Homogeneity of variance test -- Comparing subsets -- Paired t-test -- Paired t-test split by gender -- One-way analysis of variance -- Brown-Forsythe and Welch statistics -- Planned comparisons -- Post hoc comparisons -- The ANOVA procedure -- Summary -- Chapter 12: Correlations -- Pearson correlations -- Testing for significance -- Mean differences versus correlations -- Listwise versus pairwise missing values -- Comparing pairwise and listwise correlation matrices -- Pivoting table editing to enhance correlation matrices -- Creating a very trimmed matrix -- Visualizing correlations with scatterplots -- Rank order correlations -- Partial correlations -- Adding a second control variable -- Summary -- Chapter 13: Linear Regression. Assumptions of the classical linear regression model -- Example -- motor trendamp -- #160 -- car data -- Exploring associations between the target and predictors -- Fitting and interpreting a simple regression model -- Residual analysis for the simple regression model -- Saving and interpreting casewise diagnostics -- Multiple regression -- Model-building strategies -- Summary -- Chapter 14: Principal Components and Factor Analysis -- Choosing between principal components analysis and factor analysis -- PCA example -- violent crimes -- Simple descriptive analysis -- SPSS code -- principal components analysis -- Assessing factorability of the data -- Principal components analysis of the crime variables -- Principal component analysis -- two-component solution -- Factor analysis -- abilities -- The reduced correlation matrix and its eigenvalues -- Factor analysis code -- Factor analysis results -- Summary -- Chapter 15: Clustering -- Overview of cluster analysis -- Overview of SPSS Statistics cluster analysisamp -- #160 -- procedures -- Hierarchical cluster analysis example -- Descriptive analysis -- Cluster analysis -- first attempt -- Cluster analysis with four clusters -- K-means cluster analysis example -- Descriptive analysis -- K-means cluster analysis of the Old Faithful data -- Further cluster profiling -- Other analyses to try -- Twostep cluster analysis example -- Summary -- Chapter 16: Discriminant Analysis -- Descriptive discriminant analysis -- Predictive discriminant analysis -- Assumptions underlying discriminant analysis -- Example data -- Statistical and graphical summary of the data -- Discriminant analysis setup -- key decisions -- Priors -- Pooled or separate -- Dimensionality -- Syntax for the wine example -- Examining the results -- Scoring new observations -- Summary -- Index. |
ctrlnum | (OCoLC)1005899002 |
dewey-full | 005.55 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.55 |
dewey-search | 005.55 |
dewey-sort | 15.55 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12712cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBU-on1005899002</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">171011s2017 enka o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">STF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">SNM</subfield><subfield code="d">VT2</subfield><subfield code="d">UOK</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">NLE</subfield><subfield code="d">UKMGB</subfield><subfield code="d">WYU</subfield><subfield code="d">C6I</subfield><subfield code="d">UAB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">K6U</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">DXU</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB7L7658</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018554446</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787280700</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1787280705</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">178728381X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787283817</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781787283817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005899002</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000901</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">H32</subfield><subfield code="b">.S74 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">077000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stehlik-Barry, Kenneth,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95116907</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data analysis with IBM SPSS Statistics :</subfield><subfield code="b">implementing data modeling, descriptive statistics and ANOVA /</subfield><subfield code="c">Kenneth Stehlik-Barry, Anthony J. Babinec.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Data analysis with International Business Machines statistical package for the social sciences statistics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed February 16, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ...</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Copyright -- Credits -- About the Authors -- Acknowledgement -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Installing and Configuring SPSS -- The SPSS installation utility -- Installing Python for the scripting -- Licensing SPSS -- Confirming the options available -- Launching and using SPSS -- Setting parameters within the SPSS software -- Executing a basic SPSS session -- Summary -- Chapter 2: Accessing and Organizing Data -- Accessing and organizing data overview -- Reading Excel files -- Reading delimited text data files -- Saving IBM SPSS Statistics files -- Reading IBM SPSS Statistics files -- Demo -- first look at the data -- frequencies -- Variable properties -- Variable properties -- name -- Variable properties -- type -- Variable properties -- width -- Variable properties -- decimals -- Variable properties -- label -- Variable properties -- values -- Variable properties -- missing -- Variable properties -- columns -- Variable properties -- align -- Variable properties -- measure -- Variable properties -- role -- Demo -- adding variable properties to the Variable View -- Demo -- adding variable properties via syntax -- Demo -- defining variable properties -- Summary -- Chapter 3: Statistics for Individual Data Elements -- Getting the sample data -- Descriptiveamp -- #160 -- statistics for numeric fields -- Controlling the descriptives display order -- Frequency distributions -- Discovering coding issues using frequencies -- Using frequencies to verify missing data patterns -- Exploreamp -- #160 -- procedure -- Stem and leaf plot -- Boxplot -- Using explore to check subgroup patterns -- Summary -- Chapter 4: Dealing with Missing Data and Outliers -- Outliers -- Frequencies for histogram and percentile values -- Descriptives for standardized scores.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Examine procedure for extreme values and boxplot -- Detecting multivariate outliers -- Missing data -- Missing values in Frequencies -- Missing values in Descriptives -- Missing value patterns -- Replacing missing values -- Summary -- Chapter 5: Visually Exploring the Data -- Graphs available in SPSS procedures -- Obtaining bar charts with frequencies -- Obtaining a histogram with frequencies -- Creating graphs using chart builder -- Building a scatterplot -- Create a boxplot using chart builder -- Summary -- Chapter 6: Sampling, Subsetting, and Weighting -- Select cases dialog box -- Select cases -- If condition is satisfied -- Example -- If condition is satisfied combined with Filter -- If condition is satisfied combined with Copy -- If condition is satisfied combined with Delete unselected cases -- The Temporary command -- Select cases based on time or case range -- Using the filter variable -- Selecting a random sample of cases -- Split File -- Weighting -- Summary -- Chapter 7: Creating New Data Elements -- Transforming fields in SPSS -- The RECODE command -- Creating a dummy variable using RECODE -- Using RECODE to rescale a field -- Respondent's income using the midpoint of a selected category -- The COMPUTE command -- The IF command -- The DO IF/ELSE IF command -- General points regarding SPSS transformation commands -- Summary -- Chapter 8: Adding and Matching Files -- SPSS Statistics commands to merge files -- Example of one-to-many merge -- Northwind database -- Customer table -- Orders table -- The Customer-Orders relationship -- SPSS code for a one-to-many merge -- Alternate SPSS code -- One-to-one merge -- twoamp -- #160 -- data subsets from GSS2016 -- Example of combining cases using ADD FILES -- Summary -- Chapter 9: Aggregating and Restructuring Data -- Using aggregation to add fields to a file.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using aggregated variables to create new fields -- Aggregating up one level -- Preparing the data for aggregation -- Second level aggregation -- Preparing aggregated data for further use -- Matching the aggregated file back to find specific records -- Restructuring rows to columns -- Patient test data example -- Performing calculations following data restructuring -- Summary -- Chapter 10: Crosstabulation Patterns for Categorical Data -- Percentages in crosstabs -- Testing differences in column proportions -- Crosstab pivot table editing -- Adding a layer variable -- Adding a second layer -- Using a Chi-square test with crosstabs -- Expected counts -- Context sensitive help -- Ordinal measures of association -- Interval with nominal association measure -- Nominal measures of association -- Summary -- Chapter 11: Comparing Means and ANOVA -- SPSS procedures for comparing Means -- The Means procedure -- Adding a second variableamp -- #160 -- Test of linearity example -- Testing the strength of the nonlinear relationship -- Single sample t-test -- The independent samples t-test -- Homogeneity of variance test -- Comparing subsets -- Paired t-test -- Paired t-test split by gender -- One-way analysis of variance -- Brown-Forsythe and Welch statistics -- Planned comparisons -- Post hoc comparisons -- The ANOVA procedure -- Summary -- Chapter 12: Correlations -- Pearson correlations -- Testing for significance -- Mean differences versus correlations -- Listwise versus pairwise missing values -- Comparing pairwise and listwise correlation matrices -- Pivoting table editing to enhance correlation matrices -- Creating a very trimmed matrix -- Visualizing correlations with scatterplots -- Rank order correlations -- Partial correlations -- Adding a second control variable -- Summary -- Chapter 13: Linear Regression.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Assumptions of the classical linear regression model -- Example -- motor trendamp -- #160 -- car data -- Exploring associations between the target and predictors -- Fitting and interpreting a simple regression model -- Residual analysis for the simple regression model -- Saving and interpreting casewise diagnostics -- Multiple regression -- Model-building strategies -- Summary -- Chapter 14: Principal Components and Factor Analysis -- Choosing between principal components analysis and factor analysis -- PCA example -- violent crimes -- Simple descriptive analysis -- SPSS code -- principal components analysis -- Assessing factorability of the data -- Principal components analysis of the crime variables -- Principal component analysis -- two-component solution -- Factor analysis -- abilities -- The reduced correlation matrix and its eigenvalues -- Factor analysis code -- Factor analysis results -- Summary -- Chapter 15: Clustering -- Overview of cluster analysis -- Overview of SPSS Statistics cluster analysisamp -- #160 -- procedures -- Hierarchical cluster analysis example -- Descriptive analysis -- Cluster analysis -- first attempt -- Cluster analysis with four clusters -- K-means cluster analysis example -- Descriptive analysis -- K-means cluster analysis of the Old Faithful data -- Further cluster profiling -- Other analyses to try -- Twostep cluster analysis example -- Summary -- Chapter 16: Discriminant Analysis -- Descriptive discriminant analysis -- Predictive discriminant analysis -- Assumptions underlying discriminant analysis -- Example data -- Statistical and graphical summary of the data -- Discriminant analysis setup -- key decisions -- Priors -- Pooled or separate -- Dimensionality -- Syntax for the wine example -- Examining the results -- Scoring new observations -- Summary -- Index.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">SPSS (Computer file)</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88224991</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">SPSS (Computer file)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistics</subfield><subfield code="x">Computer programs.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127582</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique</subfield><subfield code="x">Logiciels.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Mathematical & Statistical Software.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics</subfield><subfield code="x">Computer programs</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Babinec, Anthony J.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018007096</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Data analysis with IBM SPSS Statistics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG8mYxPFKrymKG38rGF9Xd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Stehlik-Barry, Kenneth.</subfield><subfield code="t">Data analysis with IBM SPSS statistics : implementing data modeling, descriptive statistics and ANOVA.</subfield><subfield code="d">Birmingham, England ; Mumbai, India : Packt Publishing, 2017</subfield><subfield code="z">9781787283817</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1606539</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0035134772</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1606539</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis39007131</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-on1005899002 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:28Z |
institution | BVB |
isbn | 9781787280700 1787280705 178728381X 9781787283817 |
language | English |
oclc_num | 1005899002 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Stehlik-Barry, Kenneth, author. http://id.loc.gov/authorities/names/n95116907 Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / Kenneth Stehlik-Barry, Anthony J. Babinec. Data analysis with International Business Machines statistical package for the social sciences statistics Birmingham, UK : Packt Publishing, 2017. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (EBSCO, viewed February 16, 2018) Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ... Intro -- Copyright -- Credits -- About the Authors -- Acknowledgement -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Installing and Configuring SPSS -- The SPSS installation utility -- Installing Python for the scripting -- Licensing SPSS -- Confirming the options available -- Launching and using SPSS -- Setting parameters within the SPSS software -- Executing a basic SPSS session -- Summary -- Chapter 2: Accessing and Organizing Data -- Accessing and organizing data overview -- Reading Excel files -- Reading delimited text data files -- Saving IBM SPSS Statistics files -- Reading IBM SPSS Statistics files -- Demo -- first look at the data -- frequencies -- Variable properties -- Variable properties -- name -- Variable properties -- type -- Variable properties -- width -- Variable properties -- decimals -- Variable properties -- label -- Variable properties -- values -- Variable properties -- missing -- Variable properties -- columns -- Variable properties -- align -- Variable properties -- measure -- Variable properties -- role -- Demo -- adding variable properties to the Variable View -- Demo -- adding variable properties via syntax -- Demo -- defining variable properties -- Summary -- Chapter 3: Statistics for Individual Data Elements -- Getting the sample data -- Descriptiveamp -- #160 -- statistics for numeric fields -- Controlling the descriptives display order -- Frequency distributions -- Discovering coding issues using frequencies -- Using frequencies to verify missing data patterns -- Exploreamp -- #160 -- procedure -- Stem and leaf plot -- Boxplot -- Using explore to check subgroup patterns -- Summary -- Chapter 4: Dealing with Missing Data and Outliers -- Outliers -- Frequencies for histogram and percentile values -- Descriptives for standardized scores. The Examine procedure for extreme values and boxplot -- Detecting multivariate outliers -- Missing data -- Missing values in Frequencies -- Missing values in Descriptives -- Missing value patterns -- Replacing missing values -- Summary -- Chapter 5: Visually Exploring the Data -- Graphs available in SPSS procedures -- Obtaining bar charts with frequencies -- Obtaining a histogram with frequencies -- Creating graphs using chart builder -- Building a scatterplot -- Create a boxplot using chart builder -- Summary -- Chapter 6: Sampling, Subsetting, and Weighting -- Select cases dialog box -- Select cases -- If condition is satisfied -- Example -- If condition is satisfied combined with Filter -- If condition is satisfied combined with Copy -- If condition is satisfied combined with Delete unselected cases -- The Temporary command -- Select cases based on time or case range -- Using the filter variable -- Selecting a random sample of cases -- Split File -- Weighting -- Summary -- Chapter 7: Creating New Data Elements -- Transforming fields in SPSS -- The RECODE command -- Creating a dummy variable using RECODE -- Using RECODE to rescale a field -- Respondent's income using the midpoint of a selected category -- The COMPUTE command -- The IF command -- The DO IF/ELSE IF command -- General points regarding SPSS transformation commands -- Summary -- Chapter 8: Adding and Matching Files -- SPSS Statistics commands to merge files -- Example of one-to-many merge -- Northwind database -- Customer table -- Orders table -- The Customer-Orders relationship -- SPSS code for a one-to-many merge -- Alternate SPSS code -- One-to-one merge -- twoamp -- #160 -- data subsets from GSS2016 -- Example of combining cases using ADD FILES -- Summary -- Chapter 9: Aggregating and Restructuring Data -- Using aggregation to add fields to a file. Using aggregated variables to create new fields -- Aggregating up one level -- Preparing the data for aggregation -- Second level aggregation -- Preparing aggregated data for further use -- Matching the aggregated file back to find specific records -- Restructuring rows to columns -- Patient test data example -- Performing calculations following data restructuring -- Summary -- Chapter 10: Crosstabulation Patterns for Categorical Data -- Percentages in crosstabs -- Testing differences in column proportions -- Crosstab pivot table editing -- Adding a layer variable -- Adding a second layer -- Using a Chi-square test with crosstabs -- Expected counts -- Context sensitive help -- Ordinal measures of association -- Interval with nominal association measure -- Nominal measures of association -- Summary -- Chapter 11: Comparing Means and ANOVA -- SPSS procedures for comparing Means -- The Means procedure -- Adding a second variableamp -- #160 -- Test of linearity example -- Testing the strength of the nonlinear relationship -- Single sample t-test -- The independent samples t-test -- Homogeneity of variance test -- Comparing subsets -- Paired t-test -- Paired t-test split by gender -- One-way analysis of variance -- Brown-Forsythe and Welch statistics -- Planned comparisons -- Post hoc comparisons -- The ANOVA procedure -- Summary -- Chapter 12: Correlations -- Pearson correlations -- Testing for significance -- Mean differences versus correlations -- Listwise versus pairwise missing values -- Comparing pairwise and listwise correlation matrices -- Pivoting table editing to enhance correlation matrices -- Creating a very trimmed matrix -- Visualizing correlations with scatterplots -- Rank order correlations -- Partial correlations -- Adding a second control variable -- Summary -- Chapter 13: Linear Regression. Assumptions of the classical linear regression model -- Example -- motor trendamp -- #160 -- car data -- Exploring associations between the target and predictors -- Fitting and interpreting a simple regression model -- Residual analysis for the simple regression model -- Saving and interpreting casewise diagnostics -- Multiple regression -- Model-building strategies -- Summary -- Chapter 14: Principal Components and Factor Analysis -- Choosing between principal components analysis and factor analysis -- PCA example -- violent crimes -- Simple descriptive analysis -- SPSS code -- principal components analysis -- Assessing factorability of the data -- Principal components analysis of the crime variables -- Principal component analysis -- two-component solution -- Factor analysis -- abilities -- The reduced correlation matrix and its eigenvalues -- Factor analysis code -- Factor analysis results -- Summary -- Chapter 15: Clustering -- Overview of cluster analysis -- Overview of SPSS Statistics cluster analysisamp -- #160 -- procedures -- Hierarchical cluster analysis example -- Descriptive analysis -- Cluster analysis -- first attempt -- Cluster analysis with four clusters -- K-means cluster analysis example -- Descriptive analysis -- K-means cluster analysis of the Old Faithful data -- Further cluster profiling -- Other analyses to try -- Twostep cluster analysis example -- Summary -- Chapter 16: Discriminant Analysis -- Descriptive discriminant analysis -- Predictive discriminant analysis -- Assumptions underlying discriminant analysis -- Example data -- Statistical and graphical summary of the data -- Discriminant analysis setup -- key decisions -- Priors -- Pooled or separate -- Dimensionality -- Syntax for the wine example -- Examining the results -- Scoring new observations -- Summary -- Index. SPSS (Computer file) http://id.loc.gov/authorities/names/n88224991 SPSS (Computer file) fast Statistics Computer programs. http://id.loc.gov/authorities/subjects/sh85127582 Statistique Logiciels. COMPUTERS Mathematical & Statistical Software. bisacsh Statistics Computer programs fast Babinec, Anthony J., author. http://id.loc.gov/authorities/names/no2018007096 has work: Data analysis with IBM SPSS Statistics (Text) https://id.oclc.org/worldcat/entity/E39PCG8mYxPFKrymKG38rGF9Xd https://id.oclc.org/worldcat/ontology/hasWork Print version: Stehlik-Barry, Kenneth. Data analysis with IBM SPSS statistics : implementing data modeling, descriptive statistics and ANOVA. Birmingham, England ; Mumbai, India : Packt Publishing, 2017 9781787283817 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1606539 Volltext |
spellingShingle | Stehlik-Barry, Kenneth Babinec, Anthony J. Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / Intro -- Copyright -- Credits -- About the Authors -- Acknowledgement -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Installing and Configuring SPSS -- The SPSS installation utility -- Installing Python for the scripting -- Licensing SPSS -- Confirming the options available -- Launching and using SPSS -- Setting parameters within the SPSS software -- Executing a basic SPSS session -- Summary -- Chapter 2: Accessing and Organizing Data -- Accessing and organizing data overview -- Reading Excel files -- Reading delimited text data files -- Saving IBM SPSS Statistics files -- Reading IBM SPSS Statistics files -- Demo -- first look at the data -- frequencies -- Variable properties -- Variable properties -- name -- Variable properties -- type -- Variable properties -- width -- Variable properties -- decimals -- Variable properties -- label -- Variable properties -- values -- Variable properties -- missing -- Variable properties -- columns -- Variable properties -- align -- Variable properties -- measure -- Variable properties -- role -- Demo -- adding variable properties to the Variable View -- Demo -- adding variable properties via syntax -- Demo -- defining variable properties -- Summary -- Chapter 3: Statistics for Individual Data Elements -- Getting the sample data -- Descriptiveamp -- #160 -- statistics for numeric fields -- Controlling the descriptives display order -- Frequency distributions -- Discovering coding issues using frequencies -- Using frequencies to verify missing data patterns -- Exploreamp -- #160 -- procedure -- Stem and leaf plot -- Boxplot -- Using explore to check subgroup patterns -- Summary -- Chapter 4: Dealing with Missing Data and Outliers -- Outliers -- Frequencies for histogram and percentile values -- Descriptives for standardized scores. The Examine procedure for extreme values and boxplot -- Detecting multivariate outliers -- Missing data -- Missing values in Frequencies -- Missing values in Descriptives -- Missing value patterns -- Replacing missing values -- Summary -- Chapter 5: Visually Exploring the Data -- Graphs available in SPSS procedures -- Obtaining bar charts with frequencies -- Obtaining a histogram with frequencies -- Creating graphs using chart builder -- Building a scatterplot -- Create a boxplot using chart builder -- Summary -- Chapter 6: Sampling, Subsetting, and Weighting -- Select cases dialog box -- Select cases -- If condition is satisfied -- Example -- If condition is satisfied combined with Filter -- If condition is satisfied combined with Copy -- If condition is satisfied combined with Delete unselected cases -- The Temporary command -- Select cases based on time or case range -- Using the filter variable -- Selecting a random sample of cases -- Split File -- Weighting -- Summary -- Chapter 7: Creating New Data Elements -- Transforming fields in SPSS -- The RECODE command -- Creating a dummy variable using RECODE -- Using RECODE to rescale a field -- Respondent's income using the midpoint of a selected category -- The COMPUTE command -- The IF command -- The DO IF/ELSE IF command -- General points regarding SPSS transformation commands -- Summary -- Chapter 8: Adding and Matching Files -- SPSS Statistics commands to merge files -- Example of one-to-many merge -- Northwind database -- Customer table -- Orders table -- The Customer-Orders relationship -- SPSS code for a one-to-many merge -- Alternate SPSS code -- One-to-one merge -- twoamp -- #160 -- data subsets from GSS2016 -- Example of combining cases using ADD FILES -- Summary -- Chapter 9: Aggregating and Restructuring Data -- Using aggregation to add fields to a file. Using aggregated variables to create new fields -- Aggregating up one level -- Preparing the data for aggregation -- Second level aggregation -- Preparing aggregated data for further use -- Matching the aggregated file back to find specific records -- Restructuring rows to columns -- Patient test data example -- Performing calculations following data restructuring -- Summary -- Chapter 10: Crosstabulation Patterns for Categorical Data -- Percentages in crosstabs -- Testing differences in column proportions -- Crosstab pivot table editing -- Adding a layer variable -- Adding a second layer -- Using a Chi-square test with crosstabs -- Expected counts -- Context sensitive help -- Ordinal measures of association -- Interval with nominal association measure -- Nominal measures of association -- Summary -- Chapter 11: Comparing Means and ANOVA -- SPSS procedures for comparing Means -- The Means procedure -- Adding a second variableamp -- #160 -- Test of linearity example -- Testing the strength of the nonlinear relationship -- Single sample t-test -- The independent samples t-test -- Homogeneity of variance test -- Comparing subsets -- Paired t-test -- Paired t-test split by gender -- One-way analysis of variance -- Brown-Forsythe and Welch statistics -- Planned comparisons -- Post hoc comparisons -- The ANOVA procedure -- Summary -- Chapter 12: Correlations -- Pearson correlations -- Testing for significance -- Mean differences versus correlations -- Listwise versus pairwise missing values -- Comparing pairwise and listwise correlation matrices -- Pivoting table editing to enhance correlation matrices -- Creating a very trimmed matrix -- Visualizing correlations with scatterplots -- Rank order correlations -- Partial correlations -- Adding a second control variable -- Summary -- Chapter 13: Linear Regression. Assumptions of the classical linear regression model -- Example -- motor trendamp -- #160 -- car data -- Exploring associations between the target and predictors -- Fitting and interpreting a simple regression model -- Residual analysis for the simple regression model -- Saving and interpreting casewise diagnostics -- Multiple regression -- Model-building strategies -- Summary -- Chapter 14: Principal Components and Factor Analysis -- Choosing between principal components analysis and factor analysis -- PCA example -- violent crimes -- Simple descriptive analysis -- SPSS code -- principal components analysis -- Assessing factorability of the data -- Principal components analysis of the crime variables -- Principal component analysis -- two-component solution -- Factor analysis -- abilities -- The reduced correlation matrix and its eigenvalues -- Factor analysis code -- Factor analysis results -- Summary -- Chapter 15: Clustering -- Overview of cluster analysis -- Overview of SPSS Statistics cluster analysisamp -- #160 -- procedures -- Hierarchical cluster analysis example -- Descriptive analysis -- Cluster analysis -- first attempt -- Cluster analysis with four clusters -- K-means cluster analysis example -- Descriptive analysis -- K-means cluster analysis of the Old Faithful data -- Further cluster profiling -- Other analyses to try -- Twostep cluster analysis example -- Summary -- Chapter 16: Discriminant Analysis -- Descriptive discriminant analysis -- Predictive discriminant analysis -- Assumptions underlying discriminant analysis -- Example data -- Statistical and graphical summary of the data -- Discriminant analysis setup -- key decisions -- Priors -- Pooled or separate -- Dimensionality -- Syntax for the wine example -- Examining the results -- Scoring new observations -- Summary -- Index. SPSS (Computer file) http://id.loc.gov/authorities/names/n88224991 SPSS (Computer file) fast Statistics Computer programs. http://id.loc.gov/authorities/subjects/sh85127582 Statistique Logiciels. COMPUTERS Mathematical & Statistical Software. bisacsh Statistics Computer programs fast |
subject_GND | http://id.loc.gov/authorities/names/n88224991 http://id.loc.gov/authorities/subjects/sh85127582 |
title | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / |
title_alt | Data analysis with International Business Machines statistical package for the social sciences statistics |
title_auth | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / |
title_exact_search | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / |
title_full | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / Kenneth Stehlik-Barry, Anthony J. Babinec. |
title_fullStr | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / Kenneth Stehlik-Barry, Anthony J. Babinec. |
title_full_unstemmed | Data analysis with IBM SPSS Statistics : implementing data modeling, descriptive statistics and ANOVA / Kenneth Stehlik-Barry, Anthony J. Babinec. |
title_short | Data analysis with IBM SPSS Statistics : |
title_sort | data analysis with ibm spss statistics implementing data modeling descriptive statistics and anova |
title_sub | implementing data modeling, descriptive statistics and ANOVA / |
topic | SPSS (Computer file) http://id.loc.gov/authorities/names/n88224991 SPSS (Computer file) fast Statistics Computer programs. http://id.loc.gov/authorities/subjects/sh85127582 Statistique Logiciels. COMPUTERS Mathematical & Statistical Software. bisacsh Statistics Computer programs fast |
topic_facet | SPSS (Computer file) Statistics Computer programs. Statistique Logiciels. COMPUTERS Mathematical & Statistical Software. Statistics Computer programs |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1606539 |
work_keys_str_mv | AT stehlikbarrykenneth dataanalysiswithibmspssstatisticsimplementingdatamodelingdescriptivestatisticsandanova AT babinecanthonyj dataanalysiswithibmspssstatisticsimplementingdatamodelingdescriptivestatisticsandanova AT stehlikbarrykenneth dataanalysiswithinternationalbusinessmachinesstatisticalpackageforthesocialsciencesstatistics AT babinecanthonyj dataanalysiswithinternationalbusinessmachinesstatisticalpackageforthesocialsciencesstatistics |