Machine learning in non-stationary environments :: introduction to covariate shift adaptation /

This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sugiyama, Masashi, 1974-
Weitere Verfasser: Kawanabe, Motoaki
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, Mass. : MIT Press, ©2012.
Schriftenreihe:Adaptive computation and machine learning.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity.
Beschreibung:1 online resource (xiv, 261 pages) : illustrations
Bibliographie:Includes bibliographical references and index.
ISBN:9780262301220
0262301229
1280499222
9781280499227