Machine learning in non-stationary environments :: introduction to covariate shift adaptation /
This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variet...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©2012.
|
Schriftenreihe: | Adaptive computation and machine learning.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity. |
Beschreibung: | 1 online resource (xiv, 261 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780262301220 0262301229 1280499222 9781280499227 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn784949353 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120409s2012 maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d CDX |d COO |d OCLCQ |d DEBSZ |d OCLCQ |d IEEEE |d OCLCF |d OTZ |d OCLCQ |d JSTOR |d OCLCQ |d EBLCP |d COD |d OCLCQ |d IDEBK |d AZK |d STBDS |d AGLDB |d OCLCQ |d TOA |d OCLCQ |d MOR |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d IOG |d NJR |d U3W |d OCLCQ |d EZ9 |d STF |d WRM |d OCLCQ |d VTS |d MERER |d OCLCQ |d ICG |d CUY |d OCLCQ |d INT |d VT2 |d AU@ |d OCLCQ |d MITPR |d WYU |d LEAUB |d DKC |d OCLCQ |d UKCRE |d UKAHL |d AJS |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
016 | 7 | |a 016034761 |2 Uk | |
019 | |a 794489207 |a 817078669 |a 961629362 |a 962696956 |a 988440888 |a 988450036 |a 992079675 |a 1037929255 |a 1038618374 |a 1055396331 |a 1065925703 |a 1081285003 |a 1153462521 | ||
020 | |a 9780262301220 |q (electronic bk.) | ||
020 | |a 0262301229 |q (electronic bk.) | ||
020 | |a 1280499222 | ||
020 | |a 9781280499227 | ||
020 | |z 9780262017091 | ||
020 | |z 0262017091 | ||
024 | 8 | |a 9786613594457 | |
035 | |a (OCoLC)784949353 |z (OCoLC)794489207 |z (OCoLC)817078669 |z (OCoLC)961629362 |z (OCoLC)962696956 |z (OCoLC)988440888 |z (OCoLC)988450036 |z (OCoLC)992079675 |z (OCoLC)1037929255 |z (OCoLC)1038618374 |z (OCoLC)1055396331 |z (OCoLC)1065925703 |z (OCoLC)1081285003 |z (OCoLC)1153462521 | ||
037 | |a 22573/ctt58f2bs |b JSTOR | ||
037 | |a 8494 |b MIT Press | ||
037 | |a 9780262301220 |b MIT Press | ||
050 | 4 | |a Q325.5 |b .S845 2012eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
072 | 7 | |a COM037000 |2 bisacsh | |
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Sugiyama, Masashi, |d 1974- |1 https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP |0 http://id.loc.gov/authorities/names/n2011062656 | |
245 | 1 | 0 | |a Machine learning in non-stationary environments : |b introduction to covariate shift adaptation / |c Masashi Sugiyama and Motoaki Kawanabe. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©2012. | ||
300 | |a 1 online resource (xiv, 261 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Adaptive computation and machine learning | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity. | |
505 | 0 | |a Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion. | |
505 | 8 | |a 3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace. | |
505 | 8 | |a 5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface. | |
505 | 8 | |a 7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection. | |
505 | 8 | |a 9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index. | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a Machine learning |2 fast | |
653 | |a COMPUTER SCIENCE/Machine Learning & Neural Networks | ||
653 | |a COMPUTER SCIENCE/General | ||
653 | |a COMPUTER SCIENCE/Artificial Intelligence | ||
700 | 1 | |a Kawanabe, Motoaki. | |
758 | |i has work: |a Machine learning in non-stationary environments (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXKgFtBBqkqPbKVBgVDdP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Sugiyama, Masashi, 1974- |t Machine learning in non-stationary environments. |d Cambridge, Mass. : MIT Press, ©2012 |z 9780262017091 |w (DLC) 2011032824 |w (OCoLC)752909553 |
830 | 0 | |a Adaptive computation and machine learning. |0 http://id.loc.gov/authorities/names/n97066095 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=445720 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25668528 | ||
938 | |a Coutts Information Services |b COUT |n 22291156 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3339422 | ||
938 | |a ebrary |b EBRY |n ebr10547396 | ||
938 | |a EBSCOhost |b EBSC |n 445720 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 359445 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000155739 | ||
938 | |a YBP Library Services |b YANK |n 7594876 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn784949353 |
---|---|
_version_ | 1816796903950516224 |
adam_text | |
any_adam_object | |
author | Sugiyama, Masashi, 1974- |
author2 | Kawanabe, Motoaki |
author2_role | |
author2_variant | m k mk |
author_GND | http://id.loc.gov/authorities/names/n2011062656 |
author_facet | Sugiyama, Masashi, 1974- Kawanabe, Motoaki |
author_role | |
author_sort | Sugiyama, Masashi, 1974- |
author_variant | m s ms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .S845 2012eb |
callnumber-search | Q325.5 .S845 2012eb |
callnumber-sort | Q 3325.5 S845 42012EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBU |
contents | Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion. 3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace. 5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface. 7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection. 9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index. |
ctrlnum | (OCoLC)784949353 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07330cam a2200829 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn784949353</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120409s2012 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">COD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AZK</subfield><subfield code="d">STBDS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TOA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">NJR</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MITPR</subfield><subfield code="d">WYU</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016034761</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">794489207</subfield><subfield code="a">817078669</subfield><subfield code="a">961629362</subfield><subfield code="a">962696956</subfield><subfield code="a">988440888</subfield><subfield code="a">988450036</subfield><subfield code="a">992079675</subfield><subfield code="a">1037929255</subfield><subfield code="a">1038618374</subfield><subfield code="a">1055396331</subfield><subfield code="a">1065925703</subfield><subfield code="a">1081285003</subfield><subfield code="a">1153462521</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262301220</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262301229</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280499222</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280499227</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262017091</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0262017091</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613594457</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)784949353</subfield><subfield code="z">(OCoLC)794489207</subfield><subfield code="z">(OCoLC)817078669</subfield><subfield code="z">(OCoLC)961629362</subfield><subfield code="z">(OCoLC)962696956</subfield><subfield code="z">(OCoLC)988440888</subfield><subfield code="z">(OCoLC)988450036</subfield><subfield code="z">(OCoLC)992079675</subfield><subfield code="z">(OCoLC)1037929255</subfield><subfield code="z">(OCoLC)1038618374</subfield><subfield code="z">(OCoLC)1055396331</subfield><subfield code="z">(OCoLC)1065925703</subfield><subfield code="z">(OCoLC)1081285003</subfield><subfield code="z">(OCoLC)1153462521</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt58f2bs</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">8494</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780262301220</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.S845 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sugiyama, Masashi,</subfield><subfield code="d">1974-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011062656</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning in non-stationary environments :</subfield><subfield code="b">introduction to covariate shift adaptation /</subfield><subfield code="c">Masashi Sugiyama and Motoaki Kawanabe.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 261 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/Machine Learning & Neural Networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/General</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/Artificial Intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawanabe, Motoaki.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Machine learning in non-stationary environments (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXKgFtBBqkqPbKVBgVDdP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sugiyama, Masashi, 1974-</subfield><subfield code="t">Machine learning in non-stationary environments.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©2012</subfield><subfield code="z">9780262017091</subfield><subfield code="w">(DLC) 2011032824</subfield><subfield code="w">(OCoLC)752909553</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Adaptive computation and machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97066095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=445720</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25668528</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22291156</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3339422</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10547396</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">445720</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">359445</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000155739</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7594876</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocn784949353 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:05Z |
institution | BVB |
isbn | 9780262301220 0262301229 1280499222 9781280499227 |
language | English |
oclc_num | 784949353 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 261 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | MIT Press, |
record_format | marc |
series | Adaptive computation and machine learning. |
series2 | Adaptive computation and machine learning |
spelling | Sugiyama, Masashi, 1974- https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP http://id.loc.gov/authorities/names/n2011062656 Machine learning in non-stationary environments : introduction to covariate shift adaptation / Masashi Sugiyama and Motoaki Kawanabe. Cambridge, Mass. : MIT Press, ©2012. 1 online resource (xiv, 261 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Adaptive computation and machine learning Includes bibliographical references and index. Print version record. This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity. Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion. 3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace. 5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface. 7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection. 9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh COMPUTERS Machine Theory. bisacsh Machine learning fast COMPUTER SCIENCE/Machine Learning & Neural Networks COMPUTER SCIENCE/General COMPUTER SCIENCE/Artificial Intelligence Kawanabe, Motoaki. has work: Machine learning in non-stationary environments (Text) https://id.oclc.org/worldcat/entity/E39PCGXKgFtBBqkqPbKVBgVDdP https://id.oclc.org/worldcat/ontology/hasWork Print version: Sugiyama, Masashi, 1974- Machine learning in non-stationary environments. Cambridge, Mass. : MIT Press, ©2012 9780262017091 (DLC) 2011032824 (OCoLC)752909553 Adaptive computation and machine learning. http://id.loc.gov/authorities/names/n97066095 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=445720 Volltext |
spellingShingle | Sugiyama, Masashi, 1974- Machine learning in non-stationary environments : introduction to covariate shift adaptation / Adaptive computation and machine learning. Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion. 3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace. 5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface. 7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection. 9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh COMPUTERS Machine Theory. bisacsh Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 |
title | Machine learning in non-stationary environments : introduction to covariate shift adaptation / |
title_auth | Machine learning in non-stationary environments : introduction to covariate shift adaptation / |
title_exact_search | Machine learning in non-stationary environments : introduction to covariate shift adaptation / |
title_full | Machine learning in non-stationary environments : introduction to covariate shift adaptation / Masashi Sugiyama and Motoaki Kawanabe. |
title_fullStr | Machine learning in non-stationary environments : introduction to covariate shift adaptation / Masashi Sugiyama and Motoaki Kawanabe. |
title_full_unstemmed | Machine learning in non-stationary environments : introduction to covariate shift adaptation / Masashi Sugiyama and Motoaki Kawanabe. |
title_short | Machine learning in non-stationary environments : |
title_sort | machine learning in non stationary environments introduction to covariate shift adaptation |
title_sub | introduction to covariate shift adaptation / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh COMPUTERS Machine Theory. bisacsh Machine learning fast |
topic_facet | Machine learning. Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. COMPUTERS Machine Theory. Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=445720 |
work_keys_str_mv | AT sugiyamamasashi machinelearninginnonstationaryenvironmentsintroductiontocovariateshiftadaptation AT kawanabemotoaki machinelearninginnonstationaryenvironmentsintroductiontocovariateshiftadaptation |