Foundations of decision-making agents :: logic, probability and modality /
This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent softwar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ : [London] :
World Scientific ; Imperial College Press,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent software agents for making decisions, thereby creating computational foundations for decision-making agents. In addition, the book introduces a formal integration of the three approaches into a single unified approach that combines the advantages of all the approaches. Finally, the symbolic argumentation approach to decision making developed in this book, combining logic and probability, offers several advantages over the traditional approach to decision making which is based on simple rule-based expert systems or expected utility theory. |
Beschreibung: | 1 online resource (xv, 366 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 347-353) and index. |
ISBN: | 9789812779847 9812779841 1281938165 9781281938169 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn560635834 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 080116s2008 si a ob 001 0 eng d | ||
010 | |z 2008273481 | ||
040 | |a MERUC |b eng |e pn |c MERUC |d CCO |d E7B |d OCLCQ |d QE2 |d N$T |d YDXCP |d CDX |d IDEBK |d OCLCQ |d M6U |d OCLCQ |d I9W |d OCLCO |d OCLCF |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AZK |d AGLDB |d OCLCQ |d COCUF |d OCLCQ |d MOR |d PIFPO |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 261349786 |a 313650831 |a 471131753 |a 646768213 |a 696629502 |a 815752883 |a 961536917 |a 962678462 |a 988496684 |a 991944204 |a 1037749537 |a 1038592426 |a 1045471452 |a 1055363171 |a 1058035744 |a 1064994711 |a 1086408464 |a 1153557542 |a 1194898536 |a 1228527143 | ||
020 | |a 9789812779847 |q (electronic bk.) | ||
020 | |a 9812779841 |q (electronic bk.) | ||
020 | |a 1281938165 | ||
020 | |a 9781281938169 | ||
020 | |z 9812779833 | ||
020 | |z 9789812779830 | ||
035 | |a (OCoLC)560635834 |z (OCoLC)261349786 |z (OCoLC)313650831 |z (OCoLC)471131753 |z (OCoLC)646768213 |z (OCoLC)696629502 |z (OCoLC)815752883 |z (OCoLC)961536917 |z (OCoLC)962678462 |z (OCoLC)988496684 |z (OCoLC)991944204 |z (OCoLC)1037749537 |z (OCoLC)1038592426 |z (OCoLC)1045471452 |z (OCoLC)1055363171 |z (OCoLC)1058035744 |z (OCoLC)1064994711 |z (OCoLC)1086408464 |z (OCoLC)1153557542 |z (OCoLC)1194898536 |z (OCoLC)1228527143 | ||
050 | 4 | |a QA76.76.I58 |b D37 2008eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
072 | 7 | |a PHP |2 bicssc | |
082 | 7 | |a 006.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Das, Subrata Kumar. |1 https://id.oclc.org/worldcat/entity/E39PCjrVwjcXpvWh6g3qFDKJ9P |0 http://id.loc.gov/authorities/names/n92069384 | |
245 | 1 | 0 | |a Foundations of decision-making agents : |b logic, probability and modality / |c Subrata Das. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific ; |a [London] : |b Imperial College Press, |c ©2008. | ||
300 | |a 1 online resource (xv, 366 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 347-353) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Modeling agent epistemic states: an informal overview. 1.1. Models of agent epistemic states. 1.2. Propositional epistemic model. 1.3. Probabilistic epistemic model. 1.4. Possible world epistemic model. 1.5. Comparisons of models. 1.6. P3 model for decision-making agents -- ch. 2. Mathematical preliminaries. 2.1. Usage of symbols. 2.2. Sets, relations, and functions. 2.3. Graphs and trees. 2.4. Probability. 2.5. Algorithmic complexity -- ch. 3. Classical logics for the propositional epistemic model. 3.1. Propositional logic. 3.2. First-order logic. 3.3. Theorem proving procedure. 3.4. Resolution theorem proving. 3.5. Refutation procedure. 3.6. Complexity analysis -- ch. 4. Logic programming. 4.1. The concept. 4.2. Program clauses and goals. 4.3. Program semantics. 4.4. Definite programs. 4.5. Normal programs. 4.6. Prolog. 4.7. Prolog systems. 4.8. Complexity analysis -- ch. 5. Logical rules for making decisions. 5.1. Evolution of rules. 5.2. Bayesian probability theory for handling uncertainty. 5.3. Dempster-Shafer theory for handling uncertainty. 5.4. Measuring consensus. 5.5. Combining sources of varying confidence. 5.6. Advantages and disadvantages of rule-based systems -- ch. 6. Bayesian belief networks. 6.1. Bayesian belief networks. 6.2. Conditional independence in belief networks. 6.3. Evidence, belief, and likelihood. 6.4. Prior probabilities in networks without evidence. 6.5. Belief revision. 6.6. Evidence propagation in polytrees. 6.7. Evidence propagation in directed acyclic graphs. 6.8. Complexity of inference algorithms. 6.9. Acquisition of probabilities. 6.10. Advantages and disadvantages of belief networks. 6.11. Belief network tools -- ch. 7. Influence diagrams for making decisions. 7.1. Expected utility theory and decision trees. 7.2. Influence diagrams. 7.3. Inferencing in influence diagrams. 7.4. Compilation of influence diagrams. 7.5. Inferencing in strong junction tress -- ch. 8. Modal logics for the possible world epistemic model. 8.1. Historical development of modal logics. 8.2. Systems of modal logic. 8.3. Deductions in modal systems. 8.4. Modality. 8.5. Decidability and matrix method. 8.6. Relationships among modal systems. 8.7. Possible world semantics. 8.8. Soundness and completeness results. 8.9. Complexity and decidability of modal systems. 8.10. Modal first-order logics. 8.11. Resolution in modal first-order logics. 8.12. Modal epistemic logics. 8.13. Logic of agents beliefs (LAB) -- ch. 9. Symbolic argumentation for decision-making. 9.1. Toulmin's model of argumentation. 9.2. Domino decision-making model for P3. 9.3. Knowledge representation syntax of P3. 9.4. Formalization of P3 via LAB. 9.5. Aggregation via Dempster-Shafer theory. 9.6. Aggregation via Bayesian belief networks. | |
520 | |a This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent software agents for making decisions, thereby creating computational foundations for decision-making agents. In addition, the book introduces a formal integration of the three approaches into a single unified approach that combines the advantages of all the approaches. Finally, the symbolic argumentation approach to decision making developed in this book, combining logic and probability, offers several advantages over the traditional approach to decision making which is based on simple rule-based expert systems or expected utility theory. | ||
650 | 0 | |a Intelligent agents (Computer software) |0 http://id.loc.gov/authorities/subjects/sh97000493 | |
650 | 0 | |a Artificial intelligence |x Computer programs. |0 http://id.loc.gov/authorities/subjects/sh85008181 | |
650 | 6 | |a Agents intelligents (Logiciels) | |
650 | 6 | |a Intelligence artificielle |x Logiciels. | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |x Computer programs |2 fast | |
650 | 7 | |a Intelligent agents (Computer software) |2 fast | |
650 | 7 | |a Agent |g Informatik |2 gnd |0 http://d-nb.info/gnd/4455835-1 | |
650 | 7 | |a Agents intelligents (logiciels) |2 ram | |
758 | |i has work: |a Foundations of decision-making agents (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPKFKFxRX9BpBhWyqw4D3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Das, Subrata Kumar. |t Foundations of decision-making agents. |d Singapore ; Hackensack, NJ : World Scientific ; [London] : Imperial College Press, ©2008 |w (DLC) 2008273481 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236056 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684881 | ||
938 | |a Coutts Information Services |b COUT |n 9529345 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1681341 | ||
938 | |a ebrary |b EBRY |n ebr10255442 | ||
938 | |a EBSCOhost |b EBSC |n 236056 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 193816 | ||
938 | |a YBP Library Services |b YANK |n 2889269 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn560635834 |
---|---|
_version_ | 1816796898599632896 |
adam_text | |
any_adam_object | |
author | Das, Subrata Kumar |
author_GND | http://id.loc.gov/authorities/names/n92069384 |
author_facet | Das, Subrata Kumar |
author_role | |
author_sort | Das, Subrata Kumar |
author_variant | s k d sk skd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.76.I58 D37 2008eb |
callnumber-search | QA76.76.I58 D37 2008eb |
callnumber-sort | QA 276.76 I58 D37 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | Ch. 1. Modeling agent epistemic states: an informal overview. 1.1. Models of agent epistemic states. 1.2. Propositional epistemic model. 1.3. Probabilistic epistemic model. 1.4. Possible world epistemic model. 1.5. Comparisons of models. 1.6. P3 model for decision-making agents -- ch. 2. Mathematical preliminaries. 2.1. Usage of symbols. 2.2. Sets, relations, and functions. 2.3. Graphs and trees. 2.4. Probability. 2.5. Algorithmic complexity -- ch. 3. Classical logics for the propositional epistemic model. 3.1. Propositional logic. 3.2. First-order logic. 3.3. Theorem proving procedure. 3.4. Resolution theorem proving. 3.5. Refutation procedure. 3.6. Complexity analysis -- ch. 4. Logic programming. 4.1. The concept. 4.2. Program clauses and goals. 4.3. Program semantics. 4.4. Definite programs. 4.5. Normal programs. 4.6. Prolog. 4.7. Prolog systems. 4.8. Complexity analysis -- ch. 5. Logical rules for making decisions. 5.1. Evolution of rules. 5.2. Bayesian probability theory for handling uncertainty. 5.3. Dempster-Shafer theory for handling uncertainty. 5.4. Measuring consensus. 5.5. Combining sources of varying confidence. 5.6. Advantages and disadvantages of rule-based systems -- ch. 6. Bayesian belief networks. 6.1. Bayesian belief networks. 6.2. Conditional independence in belief networks. 6.3. Evidence, belief, and likelihood. 6.4. Prior probabilities in networks without evidence. 6.5. Belief revision. 6.6. Evidence propagation in polytrees. 6.7. Evidence propagation in directed acyclic graphs. 6.8. Complexity of inference algorithms. 6.9. Acquisition of probabilities. 6.10. Advantages and disadvantages of belief networks. 6.11. Belief network tools -- ch. 7. Influence diagrams for making decisions. 7.1. Expected utility theory and decision trees. 7.2. Influence diagrams. 7.3. Inferencing in influence diagrams. 7.4. Compilation of influence diagrams. 7.5. Inferencing in strong junction tress -- ch. 8. Modal logics for the possible world epistemic model. 8.1. Historical development of modal logics. 8.2. Systems of modal logic. 8.3. Deductions in modal systems. 8.4. Modality. 8.5. Decidability and matrix method. 8.6. Relationships among modal systems. 8.7. Possible world semantics. 8.8. Soundness and completeness results. 8.9. Complexity and decidability of modal systems. 8.10. Modal first-order logics. 8.11. Resolution in modal first-order logics. 8.12. Modal epistemic logics. 8.13. Logic of agents beliefs (LAB) -- ch. 9. Symbolic argumentation for decision-making. 9.1. Toulmin's model of argumentation. 9.2. Domino decision-making model for P3. 9.3. Knowledge representation syntax of P3. 9.4. Formalization of P3 via LAB. 9.5. Aggregation via Dempster-Shafer theory. 9.6. Aggregation via Bayesian belief networks. |
ctrlnum | (OCoLC)560635834 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07599cam a2200673Ma 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn560635834</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">080116s2008 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2008273481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MERUC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QE2</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFPO</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">261349786</subfield><subfield code="a">313650831</subfield><subfield code="a">471131753</subfield><subfield code="a">646768213</subfield><subfield code="a">696629502</subfield><subfield code="a">815752883</subfield><subfield code="a">961536917</subfield><subfield code="a">962678462</subfield><subfield code="a">988496684</subfield><subfield code="a">991944204</subfield><subfield code="a">1037749537</subfield><subfield code="a">1038592426</subfield><subfield code="a">1045471452</subfield><subfield code="a">1055363171</subfield><subfield code="a">1058035744</subfield><subfield code="a">1064994711</subfield><subfield code="a">1086408464</subfield><subfield code="a">1153557542</subfield><subfield code="a">1194898536</subfield><subfield code="a">1228527143</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812779847</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812779841</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281938165</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281938169</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812779833</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812779830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560635834</subfield><subfield code="z">(OCoLC)261349786</subfield><subfield code="z">(OCoLC)313650831</subfield><subfield code="z">(OCoLC)471131753</subfield><subfield code="z">(OCoLC)646768213</subfield><subfield code="z">(OCoLC)696629502</subfield><subfield code="z">(OCoLC)815752883</subfield><subfield code="z">(OCoLC)961536917</subfield><subfield code="z">(OCoLC)962678462</subfield><subfield code="z">(OCoLC)988496684</subfield><subfield code="z">(OCoLC)991944204</subfield><subfield code="z">(OCoLC)1037749537</subfield><subfield code="z">(OCoLC)1038592426</subfield><subfield code="z">(OCoLC)1045471452</subfield><subfield code="z">(OCoLC)1055363171</subfield><subfield code="z">(OCoLC)1058035744</subfield><subfield code="z">(OCoLC)1064994711</subfield><subfield code="z">(OCoLC)1086408464</subfield><subfield code="z">(OCoLC)1153557542</subfield><subfield code="z">(OCoLC)1194898536</subfield><subfield code="z">(OCoLC)1228527143</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.76.I58</subfield><subfield code="b">D37 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHP</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Subrata Kumar.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjrVwjcXpvWh6g3qFDKJ9P</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92069384</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of decision-making agents :</subfield><subfield code="b">logic, probability and modality /</subfield><subfield code="c">Subrata Das.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific ;</subfield><subfield code="a">[London] :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 366 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 347-353) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Modeling agent epistemic states: an informal overview. 1.1. Models of agent epistemic states. 1.2. Propositional epistemic model. 1.3. Probabilistic epistemic model. 1.4. Possible world epistemic model. 1.5. Comparisons of models. 1.6. P3 model for decision-making agents -- ch. 2. Mathematical preliminaries. 2.1. Usage of symbols. 2.2. Sets, relations, and functions. 2.3. Graphs and trees. 2.4. Probability. 2.5. Algorithmic complexity -- ch. 3. Classical logics for the propositional epistemic model. 3.1. Propositional logic. 3.2. First-order logic. 3.3. Theorem proving procedure. 3.4. Resolution theorem proving. 3.5. Refutation procedure. 3.6. Complexity analysis -- ch. 4. Logic programming. 4.1. The concept. 4.2. Program clauses and goals. 4.3. Program semantics. 4.4. Definite programs. 4.5. Normal programs. 4.6. Prolog. 4.7. Prolog systems. 4.8. Complexity analysis -- ch. 5. Logical rules for making decisions. 5.1. Evolution of rules. 5.2. Bayesian probability theory for handling uncertainty. 5.3. Dempster-Shafer theory for handling uncertainty. 5.4. Measuring consensus. 5.5. Combining sources of varying confidence. 5.6. Advantages and disadvantages of rule-based systems -- ch. 6. Bayesian belief networks. 6.1. Bayesian belief networks. 6.2. Conditional independence in belief networks. 6.3. Evidence, belief, and likelihood. 6.4. Prior probabilities in networks without evidence. 6.5. Belief revision. 6.6. Evidence propagation in polytrees. 6.7. Evidence propagation in directed acyclic graphs. 6.8. Complexity of inference algorithms. 6.9. Acquisition of probabilities. 6.10. Advantages and disadvantages of belief networks. 6.11. Belief network tools -- ch. 7. Influence diagrams for making decisions. 7.1. Expected utility theory and decision trees. 7.2. Influence diagrams. 7.3. Inferencing in influence diagrams. 7.4. Compilation of influence diagrams. 7.5. Inferencing in strong junction tress -- ch. 8. Modal logics for the possible world epistemic model. 8.1. Historical development of modal logics. 8.2. Systems of modal logic. 8.3. Deductions in modal systems. 8.4. Modality. 8.5. Decidability and matrix method. 8.6. Relationships among modal systems. 8.7. Possible world semantics. 8.8. Soundness and completeness results. 8.9. Complexity and decidability of modal systems. 8.10. Modal first-order logics. 8.11. Resolution in modal first-order logics. 8.12. Modal epistemic logics. 8.13. Logic of agents beliefs (LAB) -- ch. 9. Symbolic argumentation for decision-making. 9.1. Toulmin's model of argumentation. 9.2. Domino decision-making model for P3. 9.3. Knowledge representation syntax of P3. 9.4. Formalization of P3 via LAB. 9.5. Aggregation via Dempster-Shafer theory. 9.6. Aggregation via Bayesian belief networks.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent software agents for making decisions, thereby creating computational foundations for decision-making agents. In addition, the book introduces a formal integration of the three approaches into a single unified approach that combines the advantages of all the approaches. Finally, the symbolic argumentation approach to decision making developed in this book, combining logic and probability, offers several advantages over the traditional approach to decision making which is based on simple rule-based expert systems or expected utility theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Intelligent agents (Computer software)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97000493</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Computer programs.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008181</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Agents intelligents (Logiciels)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle</subfield><subfield code="x">Logiciels.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Computer programs</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligent agents (Computer software)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agent</subfield><subfield code="g">Informatik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4455835-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agents intelligents (logiciels)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Foundations of decision-making agents (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPKFKFxRX9BpBhWyqw4D3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Das, Subrata Kumar.</subfield><subfield code="t">Foundations of decision-making agents.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific ; [London] : Imperial College Press, ©2008</subfield><subfield code="w">(DLC) 2008273481</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236056</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684881</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">9529345</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681341</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255442</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">236056</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">193816</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2889269</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocn560635834 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:00Z |
institution | BVB |
isbn | 9789812779847 9812779841 1281938165 9781281938169 |
language | English |
oclc_num | 560635834 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 366 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific ; Imperial College Press, |
record_format | marc |
spelling | Das, Subrata Kumar. https://id.oclc.org/worldcat/entity/E39PCjrVwjcXpvWh6g3qFDKJ9P http://id.loc.gov/authorities/names/n92069384 Foundations of decision-making agents : logic, probability and modality / Subrata Das. Singapore ; Hackensack, NJ : World Scientific ; [London] : Imperial College Press, ©2008. 1 online resource (xv, 366 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 347-353) and index. Print version record. Ch. 1. Modeling agent epistemic states: an informal overview. 1.1. Models of agent epistemic states. 1.2. Propositional epistemic model. 1.3. Probabilistic epistemic model. 1.4. Possible world epistemic model. 1.5. Comparisons of models. 1.6. P3 model for decision-making agents -- ch. 2. Mathematical preliminaries. 2.1. Usage of symbols. 2.2. Sets, relations, and functions. 2.3. Graphs and trees. 2.4. Probability. 2.5. Algorithmic complexity -- ch. 3. Classical logics for the propositional epistemic model. 3.1. Propositional logic. 3.2. First-order logic. 3.3. Theorem proving procedure. 3.4. Resolution theorem proving. 3.5. Refutation procedure. 3.6. Complexity analysis -- ch. 4. Logic programming. 4.1. The concept. 4.2. Program clauses and goals. 4.3. Program semantics. 4.4. Definite programs. 4.5. Normal programs. 4.6. Prolog. 4.7. Prolog systems. 4.8. Complexity analysis -- ch. 5. Logical rules for making decisions. 5.1. Evolution of rules. 5.2. Bayesian probability theory for handling uncertainty. 5.3. Dempster-Shafer theory for handling uncertainty. 5.4. Measuring consensus. 5.5. Combining sources of varying confidence. 5.6. Advantages and disadvantages of rule-based systems -- ch. 6. Bayesian belief networks. 6.1. Bayesian belief networks. 6.2. Conditional independence in belief networks. 6.3. Evidence, belief, and likelihood. 6.4. Prior probabilities in networks without evidence. 6.5. Belief revision. 6.6. Evidence propagation in polytrees. 6.7. Evidence propagation in directed acyclic graphs. 6.8. Complexity of inference algorithms. 6.9. Acquisition of probabilities. 6.10. Advantages and disadvantages of belief networks. 6.11. Belief network tools -- ch. 7. Influence diagrams for making decisions. 7.1. Expected utility theory and decision trees. 7.2. Influence diagrams. 7.3. Inferencing in influence diagrams. 7.4. Compilation of influence diagrams. 7.5. Inferencing in strong junction tress -- ch. 8. Modal logics for the possible world epistemic model. 8.1. Historical development of modal logics. 8.2. Systems of modal logic. 8.3. Deductions in modal systems. 8.4. Modality. 8.5. Decidability and matrix method. 8.6. Relationships among modal systems. 8.7. Possible world semantics. 8.8. Soundness and completeness results. 8.9. Complexity and decidability of modal systems. 8.10. Modal first-order logics. 8.11. Resolution in modal first-order logics. 8.12. Modal epistemic logics. 8.13. Logic of agents beliefs (LAB) -- ch. 9. Symbolic argumentation for decision-making. 9.1. Toulmin's model of argumentation. 9.2. Domino decision-making model for P3. 9.3. Knowledge representation syntax of P3. 9.4. Formalization of P3 via LAB. 9.5. Aggregation via Dempster-Shafer theory. 9.6. Aggregation via Bayesian belief networks. This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent software agents for making decisions, thereby creating computational foundations for decision-making agents. In addition, the book introduces a formal integration of the three approaches into a single unified approach that combines the advantages of all the approaches. Finally, the symbolic argumentation approach to decision making developed in this book, combining logic and probability, offers several advantages over the traditional approach to decision making which is based on simple rule-based expert systems or expected utility theory. Intelligent agents (Computer software) http://id.loc.gov/authorities/subjects/sh97000493 Artificial intelligence Computer programs. http://id.loc.gov/authorities/subjects/sh85008181 Agents intelligents (Logiciels) Intelligence artificielle Logiciels. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence Computer programs fast Intelligent agents (Computer software) fast Agent Informatik gnd http://d-nb.info/gnd/4455835-1 Agents intelligents (logiciels) ram has work: Foundations of decision-making agents (Text) https://id.oclc.org/worldcat/entity/E39PCGPKFKFxRX9BpBhWyqw4D3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Das, Subrata Kumar. Foundations of decision-making agents. Singapore ; Hackensack, NJ : World Scientific ; [London] : Imperial College Press, ©2008 (DLC) 2008273481 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236056 Volltext |
spellingShingle | Das, Subrata Kumar Foundations of decision-making agents : logic, probability and modality / Ch. 1. Modeling agent epistemic states: an informal overview. 1.1. Models of agent epistemic states. 1.2. Propositional epistemic model. 1.3. Probabilistic epistemic model. 1.4. Possible world epistemic model. 1.5. Comparisons of models. 1.6. P3 model for decision-making agents -- ch. 2. Mathematical preliminaries. 2.1. Usage of symbols. 2.2. Sets, relations, and functions. 2.3. Graphs and trees. 2.4. Probability. 2.5. Algorithmic complexity -- ch. 3. Classical logics for the propositional epistemic model. 3.1. Propositional logic. 3.2. First-order logic. 3.3. Theorem proving procedure. 3.4. Resolution theorem proving. 3.5. Refutation procedure. 3.6. Complexity analysis -- ch. 4. Logic programming. 4.1. The concept. 4.2. Program clauses and goals. 4.3. Program semantics. 4.4. Definite programs. 4.5. Normal programs. 4.6. Prolog. 4.7. Prolog systems. 4.8. Complexity analysis -- ch. 5. Logical rules for making decisions. 5.1. Evolution of rules. 5.2. Bayesian probability theory for handling uncertainty. 5.3. Dempster-Shafer theory for handling uncertainty. 5.4. Measuring consensus. 5.5. Combining sources of varying confidence. 5.6. Advantages and disadvantages of rule-based systems -- ch. 6. Bayesian belief networks. 6.1. Bayesian belief networks. 6.2. Conditional independence in belief networks. 6.3. Evidence, belief, and likelihood. 6.4. Prior probabilities in networks without evidence. 6.5. Belief revision. 6.6. Evidence propagation in polytrees. 6.7. Evidence propagation in directed acyclic graphs. 6.8. Complexity of inference algorithms. 6.9. Acquisition of probabilities. 6.10. Advantages and disadvantages of belief networks. 6.11. Belief network tools -- ch. 7. Influence diagrams for making decisions. 7.1. Expected utility theory and decision trees. 7.2. Influence diagrams. 7.3. Inferencing in influence diagrams. 7.4. Compilation of influence diagrams. 7.5. Inferencing in strong junction tress -- ch. 8. Modal logics for the possible world epistemic model. 8.1. Historical development of modal logics. 8.2. Systems of modal logic. 8.3. Deductions in modal systems. 8.4. Modality. 8.5. Decidability and matrix method. 8.6. Relationships among modal systems. 8.7. Possible world semantics. 8.8. Soundness and completeness results. 8.9. Complexity and decidability of modal systems. 8.10. Modal first-order logics. 8.11. Resolution in modal first-order logics. 8.12. Modal epistemic logics. 8.13. Logic of agents beliefs (LAB) -- ch. 9. Symbolic argumentation for decision-making. 9.1. Toulmin's model of argumentation. 9.2. Domino decision-making model for P3. 9.3. Knowledge representation syntax of P3. 9.4. Formalization of P3 via LAB. 9.5. Aggregation via Dempster-Shafer theory. 9.6. Aggregation via Bayesian belief networks. Intelligent agents (Computer software) http://id.loc.gov/authorities/subjects/sh97000493 Artificial intelligence Computer programs. http://id.loc.gov/authorities/subjects/sh85008181 Agents intelligents (Logiciels) Intelligence artificielle Logiciels. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence Computer programs fast Intelligent agents (Computer software) fast Agent Informatik gnd http://d-nb.info/gnd/4455835-1 Agents intelligents (logiciels) ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh97000493 http://id.loc.gov/authorities/subjects/sh85008181 http://d-nb.info/gnd/4455835-1 |
title | Foundations of decision-making agents : logic, probability and modality / |
title_auth | Foundations of decision-making agents : logic, probability and modality / |
title_exact_search | Foundations of decision-making agents : logic, probability and modality / |
title_full | Foundations of decision-making agents : logic, probability and modality / Subrata Das. |
title_fullStr | Foundations of decision-making agents : logic, probability and modality / Subrata Das. |
title_full_unstemmed | Foundations of decision-making agents : logic, probability and modality / Subrata Das. |
title_short | Foundations of decision-making agents : |
title_sort | foundations of decision making agents logic probability and modality |
title_sub | logic, probability and modality / |
topic | Intelligent agents (Computer software) http://id.loc.gov/authorities/subjects/sh97000493 Artificial intelligence Computer programs. http://id.loc.gov/authorities/subjects/sh85008181 Agents intelligents (Logiciels) Intelligence artificielle Logiciels. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence Computer programs fast Intelligent agents (Computer software) fast Agent Informatik gnd http://d-nb.info/gnd/4455835-1 Agents intelligents (logiciels) ram |
topic_facet | Intelligent agents (Computer software) Artificial intelligence Computer programs. Agents intelligents (Logiciels) Intelligence artificielle Logiciels. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Artificial intelligence Computer programs Agent Informatik Agents intelligents (logiciels) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236056 |
work_keys_str_mv | AT dassubratakumar foundationsofdecisionmakingagentslogicprobabilityandmodality |