Recent advances in data mining of enterprise data :: algorithms and applications /
The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as "enterprise data". The common characteristic of such datasets is that the analyst...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2007.
|
Schriftenreihe: | Series on computers and operations research ;
v. 6. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as "enterprise data". The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making |
Beschreibung: | " ... the International Workshop on Mining of Enterprise Data, held on June 23, 2004 at Como, Italy, as part of the Mathematics and Machine Learning (MML) Conference. This edited book is a product evolved from this workshop."--Page 785 |
Beschreibung: | 1 online resource (xxxii, 786 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812779861 9812779868 981277985X 9789812779854 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn261350150 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081009s2008 si a ob 101 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d IDEBK |d OCLCQ |d I9W |d OCLCO |d OCLCF |d NLGGC |d OCLCO |d M6U |d OCLCQ |d OCLCO |d OCL |d OCLCO |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d STF |d M8D |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 696629503 | ||
020 | |a 9789812779861 |q (electronic bk.) | ||
020 | |a 9812779868 |q (electronic bk.) | ||
020 | |a 981277985X | ||
020 | |a 9789812779854 | ||
035 | |a (OCoLC)261350150 |z (OCoLC)696629503 | ||
050 | 4 | |a QA76.9.D343 |b I589 2004eb | |
072 | 7 | |a COM |x 021030 |2 bisacsh | |
082 | 7 | |a 006.312 |2 22 | |
049 | |a MAIN | ||
111 | 2 | |a International Workshop on Mining of Enterprise Data |d (2004 : |c Como, Italy) |0 http://id.loc.gov/authorities/names/no2009106616 | |
245 | 1 | 0 | |a Recent advances in data mining of enterprise data : |b algorithms and applications / |c [editors], T. Warren Liao, Evangelos Triantaphyllou. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xxxii, 786 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on computers and operations research ; |v v. 6 | |
500 | |a " ... the International Workshop on Mining of Enterprise Data, held on June 23, 2004 at Como, Italy, as part of the Mathematics and Machine Learning (MML) Conference. This edited book is a product evolved from this workshop."--Page 785 | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Enterprise data mining: a review and research directions / T.W. Liao -- ch. 2. Application and comparison of classification techniques in controlling credit risk / L. Yu [and others] -- ch. 3. Predictive classification with imbalanced enterprise data / S. Daskalaki, I. Kopanas, and N.M. Avouris -- ch. 4. Using soft computing methods for time series forecasting / P.-C. Chang and Y.-W. Wang -- ch. 5. Data mining applications of process platform formation for high variety production / J. Jiao and L. Zhang -- ch. 6. A data mining approach to production control in dynamic manufacturing systems / H.-S. Min and Y. Yih -- ch. 7. Predicting wine quality from agricultural data with single-objective and multi-objective data mining algorithms / M. Last [and others] -- ch. 8. Enhancing competitive advantages and operational excellence for high-tech industry through data mining and digital management / C.-F. Chien, S.-C. Hsu, and Chia-Yu Hsu -- ch. 9. Multivariate control charts from a data mining perspective / G.C. Porzio and G. Ragozini -- ch. 10. Data mining of multi-dimensional functional data for manufacturing fault diagnosis / M.K. Jeong, S.G. Kong, and O.A. Omitaomu -- ch. 11. Maintenance planning using enterprise data mining / L.P. Khoo, Z.W. Zhong, and H.Y. Lim -- ch. 12. Data mining techniques for improving workflow model / D. Gunopulos and S. Subramaniam -- ch. 13. Mining images of cell-based assays / P. Perner -- ch. 14. Support vector machines and applications / T.B. Trafalis and O.O. Oladunni -- ch. 15. A survey of manifold-based learning methods / X. Huo, X. Ni, and A.K. Smith -- ch. 16. Predictive regression modeling for small enterprise data sets with bootstrap, clustering, and bagging / C.J. Feng and K. Erla. | |
520 | |a The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as "enterprise data". The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making | ||
650 | 0 | |a Data mining |v Congresses. | |
650 | 0 | |a Business enterprises |x Data processing |v Congresses. | |
650 | 6 | |a Exploration de données (Informatique) |v Congrès. | |
650 | 6 | |a Entreprises |x Informatique |v Congrès. | |
650 | 7 | |a COMPUTERS |x Database Management |x Data Mining. |2 bisacsh | |
650 | 7 | |a Business enterprises |x Data processing |2 fast | |
650 | 7 | |a Data mining |2 fast | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Liao, T. Warren |q (Thunshun Warren), |d 1957- |1 https://id.oclc.org/worldcat/entity/E39PCjC9RQDkqmfG3xyd7xYQMP |0 http://id.loc.gov/authorities/names/no2008083113 | |
700 | 1 | |a Triantaphyllou, Evangelos. |0 http://id.loc.gov/authorities/names/n00005470 | |
776 | 0 | 8 | |i Print version: |a International Workshop on Mining of Enterprise Data (2004 : Como, Italy). |t Recent advances in data mining of enterprise data. |d Singapore ; Hackensack, NJ : World Scientific, ©2007 |z 981277985X |z 9789812779854 |w (DLC) 2008273546 |w (OCoLC)191658450 |
830 | 0 | |a Series on computers and operations research ; |v v. 6. |0 http://id.loc.gov/authorities/names/no2004018266 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236063 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684882 | ||
938 | |a EBSCOhost |b EBSC |n 236063 | ||
938 | |a YBP Library Services |b YANK |n 2889270 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn261350150 |
---|---|
_version_ | 1816796897435713536 |
adam_text | |
any_adam_object | |
author2 | Liao, T. Warren (Thunshun Warren), 1957- Triantaphyllou, Evangelos |
author2_role | |
author2_variant | t w l tw twl e t et |
author_GND | http://id.loc.gov/authorities/names/no2008083113 http://id.loc.gov/authorities/names/n00005470 |
author_corporate | International Workshop on Mining of Enterprise Data Como, Italy |
author_corporate_role | |
author_facet | Liao, T. Warren (Thunshun Warren), 1957- Triantaphyllou, Evangelos International Workshop on Mining of Enterprise Data Como, Italy |
author_sort | International Workshop on Mining of Enterprise Data Como, Italy |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 I589 2004eb |
callnumber-search | QA76.9.D343 I589 2004eb |
callnumber-sort | QA 276.9 D343 I589 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | Ch. 1. Enterprise data mining: a review and research directions / T.W. Liao -- ch. 2. Application and comparison of classification techniques in controlling credit risk / L. Yu [and others] -- ch. 3. Predictive classification with imbalanced enterprise data / S. Daskalaki, I. Kopanas, and N.M. Avouris -- ch. 4. Using soft computing methods for time series forecasting / P.-C. Chang and Y.-W. Wang -- ch. 5. Data mining applications of process platform formation for high variety production / J. Jiao and L. Zhang -- ch. 6. A data mining approach to production control in dynamic manufacturing systems / H.-S. Min and Y. Yih -- ch. 7. Predicting wine quality from agricultural data with single-objective and multi-objective data mining algorithms / M. Last [and others] -- ch. 8. Enhancing competitive advantages and operational excellence for high-tech industry through data mining and digital management / C.-F. Chien, S.-C. Hsu, and Chia-Yu Hsu -- ch. 9. Multivariate control charts from a data mining perspective / G.C. Porzio and G. Ragozini -- ch. 10. Data mining of multi-dimensional functional data for manufacturing fault diagnosis / M.K. Jeong, S.G. Kong, and O.A. Omitaomu -- ch. 11. Maintenance planning using enterprise data mining / L.P. Khoo, Z.W. Zhong, and H.Y. Lim -- ch. 12. Data mining techniques for improving workflow model / D. Gunopulos and S. Subramaniam -- ch. 13. Mining images of cell-based assays / P. Perner -- ch. 14. Support vector machines and applications / T.B. Trafalis and O.O. Oladunni -- ch. 15. A survey of manifold-based learning methods / X. Huo, X. Ni, and A.K. Smith -- ch. 16. Predictive regression modeling for small enterprise data sets with bootstrap, clustering, and bagging / C.J. Feng and K. Erla. |
ctrlnum | (OCoLC)261350150 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05780cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn261350150</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081009s2008 si a ob 101 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">696629503</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812779861</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812779868</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981277985X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812779854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261350150</subfield><subfield code="z">(OCoLC)696629503</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield><subfield code="b">I589 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">021030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">International Workshop on Mining of Enterprise Data</subfield><subfield code="d">(2004 :</subfield><subfield code="c">Como, Italy)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009106616</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent advances in data mining of enterprise data :</subfield><subfield code="b">algorithms and applications /</subfield><subfield code="c">[editors], T. Warren Liao, Evangelos Triantaphyllou.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxii, 786 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on computers and operations research ;</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">" ... the International Workshop on Mining of Enterprise Data, held on June 23, 2004 at Como, Italy, as part of the Mathematics and Machine Learning (MML) Conference. This edited book is a product evolved from this workshop."--Page 785</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Enterprise data mining: a review and research directions / T.W. Liao -- ch. 2. Application and comparison of classification techniques in controlling credit risk / L. Yu [and others] -- ch. 3. Predictive classification with imbalanced enterprise data / S. Daskalaki, I. Kopanas, and N.M. Avouris -- ch. 4. Using soft computing methods for time series forecasting / P.-C. Chang and Y.-W. Wang -- ch. 5. Data mining applications of process platform formation for high variety production / J. Jiao and L. Zhang -- ch. 6. A data mining approach to production control in dynamic manufacturing systems / H.-S. Min and Y. Yih -- ch. 7. Predicting wine quality from agricultural data with single-objective and multi-objective data mining algorithms / M. Last [and others] -- ch. 8. Enhancing competitive advantages and operational excellence for high-tech industry through data mining and digital management / C.-F. Chien, S.-C. Hsu, and Chia-Yu Hsu -- ch. 9. Multivariate control charts from a data mining perspective / G.C. Porzio and G. Ragozini -- ch. 10. Data mining of multi-dimensional functional data for manufacturing fault diagnosis / M.K. Jeong, S.G. Kong, and O.A. Omitaomu -- ch. 11. Maintenance planning using enterprise data mining / L.P. Khoo, Z.W. Zhong, and H.Y. Lim -- ch. 12. Data mining techniques for improving workflow model / D. Gunopulos and S. Subramaniam -- ch. 13. Mining images of cell-based assays / P. Perner -- ch. 14. Support vector machines and applications / T.B. Trafalis and O.O. Oladunni -- ch. 15. A survey of manifold-based learning methods / X. Huo, X. Ni, and A.K. Smith -- ch. 16. Predictive regression modeling for small enterprise data sets with bootstrap, clustering, and bagging / C.J. Feng and K. Erla.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as "enterprise data". The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business enterprises</subfield><subfield code="x">Data processing</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Entreprises</subfield><subfield code="x">Informatique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Database Management</subfield><subfield code="x">Data Mining.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Business enterprises</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, T. Warren</subfield><subfield code="q">(Thunshun Warren),</subfield><subfield code="d">1957-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjC9RQDkqmfG3xyd7xYQMP</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2008083113</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triantaphyllou, Evangelos.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00005470</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">International Workshop on Mining of Enterprise Data (2004 : Como, Italy).</subfield><subfield code="t">Recent advances in data mining of enterprise data.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2007</subfield><subfield code="z">981277985X</subfield><subfield code="z">9789812779854</subfield><subfield code="w">(DLC) 2008273546</subfield><subfield code="w">(OCoLC)191658450</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on computers and operations research ;</subfield><subfield code="v">v. 6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2004018266</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236063</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684882</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">236063</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2889270</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBU-ocn261350150 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:48:59Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2009106616 |
isbn | 9789812779861 9812779868 981277985X 9789812779854 |
language | English |
oclc_num | 261350150 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxii, 786 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2007 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific, |
record_format | marc |
series | Series on computers and operations research ; |
series2 | Series on computers and operations research ; |
spelling | International Workshop on Mining of Enterprise Data (2004 : Como, Italy) http://id.loc.gov/authorities/names/no2009106616 Recent advances in data mining of enterprise data : algorithms and applications / [editors], T. Warren Liao, Evangelos Triantaphyllou. Singapore ; Hackensack, NJ : World Scientific, ©2007. 1 online resource (xxxii, 786 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on computers and operations research ; v. 6 " ... the International Workshop on Mining of Enterprise Data, held on June 23, 2004 at Como, Italy, as part of the Mathematics and Machine Learning (MML) Conference. This edited book is a product evolved from this workshop."--Page 785 Includes bibliographical references and index. Print version record. Ch. 1. Enterprise data mining: a review and research directions / T.W. Liao -- ch. 2. Application and comparison of classification techniques in controlling credit risk / L. Yu [and others] -- ch. 3. Predictive classification with imbalanced enterprise data / S. Daskalaki, I. Kopanas, and N.M. Avouris -- ch. 4. Using soft computing methods for time series forecasting / P.-C. Chang and Y.-W. Wang -- ch. 5. Data mining applications of process platform formation for high variety production / J. Jiao and L. Zhang -- ch. 6. A data mining approach to production control in dynamic manufacturing systems / H.-S. Min and Y. Yih -- ch. 7. Predicting wine quality from agricultural data with single-objective and multi-objective data mining algorithms / M. Last [and others] -- ch. 8. Enhancing competitive advantages and operational excellence for high-tech industry through data mining and digital management / C.-F. Chien, S.-C. Hsu, and Chia-Yu Hsu -- ch. 9. Multivariate control charts from a data mining perspective / G.C. Porzio and G. Ragozini -- ch. 10. Data mining of multi-dimensional functional data for manufacturing fault diagnosis / M.K. Jeong, S.G. Kong, and O.A. Omitaomu -- ch. 11. Maintenance planning using enterprise data mining / L.P. Khoo, Z.W. Zhong, and H.Y. Lim -- ch. 12. Data mining techniques for improving workflow model / D. Gunopulos and S. Subramaniam -- ch. 13. Mining images of cell-based assays / P. Perner -- ch. 14. Support vector machines and applications / T.B. Trafalis and O.O. Oladunni -- ch. 15. A survey of manifold-based learning methods / X. Huo, X. Ni, and A.K. Smith -- ch. 16. Predictive regression modeling for small enterprise data sets with bootstrap, clustering, and bagging / C.J. Feng and K. Erla. The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as "enterprise data". The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making Data mining Congresses. Business enterprises Data processing Congresses. Exploration de données (Informatique) Congrès. Entreprises Informatique Congrès. COMPUTERS Database Management Data Mining. bisacsh Business enterprises Data processing fast Data mining fast Conference papers and proceedings fast Liao, T. Warren (Thunshun Warren), 1957- https://id.oclc.org/worldcat/entity/E39PCjC9RQDkqmfG3xyd7xYQMP http://id.loc.gov/authorities/names/no2008083113 Triantaphyllou, Evangelos. http://id.loc.gov/authorities/names/n00005470 Print version: International Workshop on Mining of Enterprise Data (2004 : Como, Italy). Recent advances in data mining of enterprise data. Singapore ; Hackensack, NJ : World Scientific, ©2007 981277985X 9789812779854 (DLC) 2008273546 (OCoLC)191658450 Series on computers and operations research ; v. 6. http://id.loc.gov/authorities/names/no2004018266 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236063 Volltext |
spellingShingle | Recent advances in data mining of enterprise data : algorithms and applications / Series on computers and operations research ; Ch. 1. Enterprise data mining: a review and research directions / T.W. Liao -- ch. 2. Application and comparison of classification techniques in controlling credit risk / L. Yu [and others] -- ch. 3. Predictive classification with imbalanced enterprise data / S. Daskalaki, I. Kopanas, and N.M. Avouris -- ch. 4. Using soft computing methods for time series forecasting / P.-C. Chang and Y.-W. Wang -- ch. 5. Data mining applications of process platform formation for high variety production / J. Jiao and L. Zhang -- ch. 6. A data mining approach to production control in dynamic manufacturing systems / H.-S. Min and Y. Yih -- ch. 7. Predicting wine quality from agricultural data with single-objective and multi-objective data mining algorithms / M. Last [and others] -- ch. 8. Enhancing competitive advantages and operational excellence for high-tech industry through data mining and digital management / C.-F. Chien, S.-C. Hsu, and Chia-Yu Hsu -- ch. 9. Multivariate control charts from a data mining perspective / G.C. Porzio and G. Ragozini -- ch. 10. Data mining of multi-dimensional functional data for manufacturing fault diagnosis / M.K. Jeong, S.G. Kong, and O.A. Omitaomu -- ch. 11. Maintenance planning using enterprise data mining / L.P. Khoo, Z.W. Zhong, and H.Y. Lim -- ch. 12. Data mining techniques for improving workflow model / D. Gunopulos and S. Subramaniam -- ch. 13. Mining images of cell-based assays / P. Perner -- ch. 14. Support vector machines and applications / T.B. Trafalis and O.O. Oladunni -- ch. 15. A survey of manifold-based learning methods / X. Huo, X. Ni, and A.K. Smith -- ch. 16. Predictive regression modeling for small enterprise data sets with bootstrap, clustering, and bagging / C.J. Feng and K. Erla. Data mining Congresses. Business enterprises Data processing Congresses. Exploration de données (Informatique) Congrès. Entreprises Informatique Congrès. COMPUTERS Database Management Data Mining. bisacsh Business enterprises Data processing fast Data mining fast |
title | Recent advances in data mining of enterprise data : algorithms and applications / |
title_auth | Recent advances in data mining of enterprise data : algorithms and applications / |
title_exact_search | Recent advances in data mining of enterprise data : algorithms and applications / |
title_full | Recent advances in data mining of enterprise data : algorithms and applications / [editors], T. Warren Liao, Evangelos Triantaphyllou. |
title_fullStr | Recent advances in data mining of enterprise data : algorithms and applications / [editors], T. Warren Liao, Evangelos Triantaphyllou. |
title_full_unstemmed | Recent advances in data mining of enterprise data : algorithms and applications / [editors], T. Warren Liao, Evangelos Triantaphyllou. |
title_short | Recent advances in data mining of enterprise data : |
title_sort | recent advances in data mining of enterprise data algorithms and applications |
title_sub | algorithms and applications / |
topic | Data mining Congresses. Business enterprises Data processing Congresses. Exploration de données (Informatique) Congrès. Entreprises Informatique Congrès. COMPUTERS Database Management Data Mining. bisacsh Business enterprises Data processing fast Data mining fast |
topic_facet | Data mining Congresses. Business enterprises Data processing Congresses. Exploration de données (Informatique) Congrès. Entreprises Informatique Congrès. COMPUTERS Database Management Data Mining. Business enterprises Data processing Data mining Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236063 |
work_keys_str_mv | AT internationalworkshoponminingofenterprisedatacomoitaly recentadvancesindataminingofenterprisedataalgorithmsandapplications AT liaotwarren recentadvancesindataminingofenterprisedataalgorithmsandapplications AT triantaphyllouevangelos recentadvancesindataminingofenterprisedataalgorithmsandapplications |