Principles of artificial neural networks /:
The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural networ...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2007.
|
Ausgabe: | 2nd ed. |
Schriftenreihe: | Advanced series on circuits and systems ;
v. 6. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strength. |
Beschreibung: | 1 online resource (xv, 303 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 291-297) and indexes. |
ISBN: | 9789812770578 9812770577 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn173684881 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 071005s2007 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d NLGGC |d OCLCQ |d AGLDB |d COCUF |d ZCU |d JBG |d RCC |d OCLCQ |d VTS |d CEF |d OCLCQ |d INT |d AU@ |d OCLCQ |d STF |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 173485478 | ||
020 | |a 9789812770578 |q (electronic bk.) | ||
020 | |a 9812770577 |q (electronic bk.) | ||
020 | |z 9812706240 | ||
020 | |z 9789812706249 | ||
035 | |a (OCoLC)173684881 |z (OCoLC)173485478 | ||
050 | 4 | |a QA76.87 |b G73 2007eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Graupe, Daniel. |0 http://id.loc.gov/authorities/names/n81129377 | |
245 | 1 | 0 | |a Principles of artificial neural networks / |c Daniel Graupe. |
250 | |a 2nd ed. | ||
260 | |a New Jersey : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xv, 303 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Advanced series on circuits and systems ; |v vol. 6 | |
504 | |a Includes bibliographical references (pages 291-297) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Arti cial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hop eld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks. | |
505 | 8 | |a Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) NetworkProblems; References; Author Index; Subject Index. | |
520 | |a The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strength. | ||
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
776 | 0 | 8 | |i Print version: |a Graupe, Daniel. |t Principles of artificial neural networks. |b 2nd ed. |d New Jersey : World Scientific, ©2007 |z 9812706240 |z 9789812706249 |w (OCoLC)141384911 |
830 | 0 | |a Advanced series on circuits and systems ; |v v. 6. |0 http://id.loc.gov/authorities/names/no94008328 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203908 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684265 | ||
938 | |a EBSCOhost |b EBSC |n 203908 | ||
938 | |a YBP Library Services |b YANK |n 2706240 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn173684881 |
---|---|
_version_ | 1816796896300105728 |
adam_text | |
any_adam_object | |
author | Graupe, Daniel |
author_GND | http://id.loc.gov/authorities/names/n81129377 |
author_facet | Graupe, Daniel |
author_role | |
author_sort | Graupe, Daniel |
author_variant | d g dg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 G73 2007eb |
callnumber-search | QA76.87 G73 2007eb |
callnumber-sort | QA 276.87 G73 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Arti cial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hop eld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks. Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) NetworkProblems; References; Author Index; Subject Index. |
ctrlnum | (OCoLC)173684881 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03766cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn173684881</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">071005s2007 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">ZCU</subfield><subfield code="d">JBG</subfield><subfield code="d">RCC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">173485478</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770578</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770577</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812706240</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812706249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173684881</subfield><subfield code="z">(OCoLC)173485478</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.87</subfield><subfield code="b">G73 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graupe, Daniel.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81129377</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of artificial neural networks /</subfield><subfield code="c">Daniel Graupe.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 303 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on circuits and systems ;</subfield><subfield code="v">vol. 6</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 291-297) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Arti cial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hop eld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) NetworkProblems; References; Author Index; Subject Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strength.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Graupe, Daniel.</subfield><subfield code="t">Principles of artificial neural networks.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">New Jersey : World Scientific, ©2007</subfield><subfield code="z">9812706240</subfield><subfield code="z">9789812706249</subfield><subfield code="w">(OCoLC)141384911</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on circuits and systems ;</subfield><subfield code="v">v. 6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no94008328</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203908</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684265</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203908</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2706240</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocn173684881 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:48:58Z |
institution | BVB |
isbn | 9789812770578 9812770577 |
language | English |
oclc_num | 173684881 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 303 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
series | Advanced series on circuits and systems ; |
series2 | Advanced series on circuits and systems ; |
spelling | Graupe, Daniel. http://id.loc.gov/authorities/names/n81129377 Principles of artificial neural networks / Daniel Graupe. 2nd ed. New Jersey : World Scientific, ©2007. 1 online resource (xv, 303 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Advanced series on circuits and systems ; vol. 6 Includes bibliographical references (pages 291-297) and indexes. Print version record. Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Arti cial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hop eld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks. Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) NetworkProblems; References; Author Index; Subject Index. The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strength. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Réseaux neuronaux (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Neural networks (Computer science) fast Print version: Graupe, Daniel. Principles of artificial neural networks. 2nd ed. New Jersey : World Scientific, ©2007 9812706240 9789812706249 (OCoLC)141384911 Advanced series on circuits and systems ; v. 6. http://id.loc.gov/authorities/names/no94008328 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203908 Volltext |
spellingShingle | Graupe, Daniel Principles of artificial neural networks / Advanced series on circuits and systems ; Acknowledgments; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction and Role of Arti cial Neural Networks; Chapter 2. Fundamentals of Biological Neural Networks; Chapter 3. Basic Principles of ANNs and Their Early Structures; Chapter 4. The Perceptron; Chapter 5. The Madaline; Chapter 6. Back Propagation; Chapter 7. Hop eld Networks; Chapter 8. Counter Propagation; Chapter 9. Adaptive Resonance Theory; Chapter 10. The Cognitron and the Neocognitron; Chapter 11. Statistical Training; Chapter 12. Recurrent (Time Cycling) Back Propagation Networks. Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) NetworkProblems; References; Author Index; Subject Index. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Réseaux neuronaux (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Neural networks (Computer science) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh90001937 |
title | Principles of artificial neural networks / |
title_auth | Principles of artificial neural networks / |
title_exact_search | Principles of artificial neural networks / |
title_full | Principles of artificial neural networks / Daniel Graupe. |
title_fullStr | Principles of artificial neural networks / Daniel Graupe. |
title_full_unstemmed | Principles of artificial neural networks / Daniel Graupe. |
title_short | Principles of artificial neural networks / |
title_sort | principles of artificial neural networks |
topic | Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Réseaux neuronaux (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Neural networks (Computer science) fast |
topic_facet | Neural networks (Computer science) Réseaux neuronaux (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203908 |
work_keys_str_mv | AT graupedaniel principlesofartificialneuralnetworks |