Advances in kernel methods :: support vector learning /
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©1999.
©1999 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (vii, 376 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 353-371) and index. |
ISBN: | 0585128294 9780585128290 9780262194167 0262194163 9780262283199 0262283190 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocm44957981 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 000804s1999 maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d ZID |d OCLCQ |d YDXCP |d OCLCQ |d TUU |d OCLCQ |d TNF |d OCLCQ |d ZCU |d OCLCO |d OCLCF |d OCLCQ |d COO |d CUS |d MYG |d NLGGC |d OCLCQ |d IL4I4 |d OCLCQ |d VT2 |d OCLCQ |d AGLDB |d LIP |d OCLCQ |d SAV |d OCLCQ |d QT7 |d RRP |d LUE |d OCLCQ |d WRM |d VTS |d CEF |d OCLCQ |d INT |d TOF |d OCLCQ |d WYU |d S9I |d YOU |d STF |d JZ6 |d XMC |d RDF |d UKBTH |d U9X |d EUX |d OCLCQ |d OCLCO |d ANO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 71799403 |a 532592519 |a 610526709 |a 961634624 |a 961896502 |a 962596057 |a 990548962 |a 990593558 |a 1007405497 |a 1038613004 |a 1053017300 |a 1078009010 |a 1105751123 |a 1113794077 |a 1123225194 |a 1127922090 |a 1154215263 |a 1159660046 |a 1162255425 |a 1167615300 |a 1188970397 |a 1194836232 |a 1203229806 |a 1241907379 | ||
020 | |a 0585128294 |q (electronic bk.) | ||
020 | |a 9780585128290 |q (electronic bk.) | ||
020 | |a 9780262194167 |q (alk. paper) | ||
020 | |a 0262194163 |q (alk. paper) | ||
020 | |a 9780262283199 |q (electronic book) | ||
020 | |a 0262283190 |q (electronic book) | ||
020 | |z 0262194163 |q (alk. paper) | ||
035 | |a (OCoLC)44957981 |z (OCoLC)71799403 |z (OCoLC)532592519 |z (OCoLC)610526709 |z (OCoLC)961634624 |z (OCoLC)961896502 |z (OCoLC)962596057 |z (OCoLC)990548962 |z (OCoLC)990593558 |z (OCoLC)1007405497 |z (OCoLC)1038613004 |z (OCoLC)1053017300 |z (OCoLC)1078009010 |z (OCoLC)1105751123 |z (OCoLC)1113794077 |z (OCoLC)1123225194 |z (OCoLC)1127922090 |z (OCoLC)1154215263 |z (OCoLC)1159660046 |z (OCoLC)1162255425 |z (OCoLC)1167615300 |z (OCoLC)1188970397 |z (OCoLC)1194836232 |z (OCoLC)1203229806 |z (OCoLC)1241907379 | ||
050 | 4 | |a Q325.5 |b .A32 1999eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 21 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in kernel methods : |b support vector learning / |c edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©1999. | ||
264 | 4 | |c ©1999 | |
300 | |a 1 online resource (vii, 376 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 353-371) and index. | ||
505 | 0 | |a Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [and others] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller. | |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 0 | |a Kernel functions. |0 http://id.loc.gov/authorities/subjects/sh85072061 | |
650 | 2 | |a Algorithms |0 https://id.nlm.nih.gov/mesh/D000465 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Algorithmes. | |
650 | 6 | |a Noyaux (Mathématiques) | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Kernel functions |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 1 | 7 | |a Kunstmatige intelligentie. |2 gtt |
650 | 1 | 7 | |a Algoritmen. |2 gtt |
650 | 1 | 7 | |a Patroonherkenning. |2 gtt |
650 | 1 | 7 | |a Functies (wiskunde) |0 (NL-LeOCL)078510333 |2 gtt |
650 | 1 | 7 | |a Machine-learning. |2 gtt |
655 | 7 | |a Congressen (vorm) |0 (NL-LeOCL)088142469 |2 gtt | |
700 | 1 | |a Schölkopf, Bernhard. |0 http://id.loc.gov/authorities/names/n98071318 | |
700 | 1 | |a Burges, Christopher J. C. |0 http://id.loc.gov/authorities/names/n98071320 | |
700 | 1 | |a Smola, Alexander J. |0 http://id.loc.gov/authorities/names/n98071321 | |
758 | |i has work: |a Advances in kernel methods (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGt98kDjvVJMbHpHqvQ76q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Advances in kernel methods. |d Cambridge, Mass. : MIT Press, ©1999 |z 0262194163 |w (DLC) 98040302 |w (OCoLC)39706952 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBSCOhost |b EBSC |n 421 | ||
938 | |a YBP Library Services |b YANK |n 2307963 | ||
938 | |a YBP Library Services |b YANK |n 10835639 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocm44957981 |
---|---|
_version_ | 1816796894058250241 |
adam_text | |
any_adam_object | |
author2 | Schölkopf, Bernhard Burges, Christopher J. C. Smola, Alexander J. |
author2_role | |
author2_variant | b s bs c j c b cjc cjcb a j s aj ajs |
author_GND | http://id.loc.gov/authorities/names/n98071318 http://id.loc.gov/authorities/names/n98071320 http://id.loc.gov/authorities/names/n98071321 |
author_facet | Schölkopf, Bernhard Burges, Christopher J. C. Smola, Alexander J. |
author_sort | Schölkopf, Bernhard |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .A32 1999eb |
callnumber-search | Q325.5 .A32 1999eb |
callnumber-sort | Q 3325.5 A32 41999EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBU |
contents | Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [and others] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller. |
ctrlnum | (OCoLC)44957981 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06167cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocm44957981 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">000804s1999 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZID</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">CUS</subfield><subfield code="d">MYG</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IL4I4</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SAV</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QT7</subfield><subfield code="d">RRP</subfield><subfield code="d">LUE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">TOF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">S9I</subfield><subfield code="d">YOU</subfield><subfield code="d">STF</subfield><subfield code="d">JZ6</subfield><subfield code="d">XMC</subfield><subfield code="d">RDF</subfield><subfield code="d">UKBTH</subfield><subfield code="d">U9X</subfield><subfield code="d">EUX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">ANO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">71799403</subfield><subfield code="a">532592519</subfield><subfield code="a">610526709</subfield><subfield code="a">961634624</subfield><subfield code="a">961896502</subfield><subfield code="a">962596057</subfield><subfield code="a">990548962</subfield><subfield code="a">990593558</subfield><subfield code="a">1007405497</subfield><subfield code="a">1038613004</subfield><subfield code="a">1053017300</subfield><subfield code="a">1078009010</subfield><subfield code="a">1105751123</subfield><subfield code="a">1113794077</subfield><subfield code="a">1123225194</subfield><subfield code="a">1127922090</subfield><subfield code="a">1154215263</subfield><subfield code="a">1159660046</subfield><subfield code="a">1162255425</subfield><subfield code="a">1167615300</subfield><subfield code="a">1188970397</subfield><subfield code="a">1194836232</subfield><subfield code="a">1203229806</subfield><subfield code="a">1241907379</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585128294</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585128290</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262194167</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262194163</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262283199</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262283190</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0262194163</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44957981</subfield><subfield code="z">(OCoLC)71799403</subfield><subfield code="z">(OCoLC)532592519</subfield><subfield code="z">(OCoLC)610526709</subfield><subfield code="z">(OCoLC)961634624</subfield><subfield code="z">(OCoLC)961896502</subfield><subfield code="z">(OCoLC)962596057</subfield><subfield code="z">(OCoLC)990548962</subfield><subfield code="z">(OCoLC)990593558</subfield><subfield code="z">(OCoLC)1007405497</subfield><subfield code="z">(OCoLC)1038613004</subfield><subfield code="z">(OCoLC)1053017300</subfield><subfield code="z">(OCoLC)1078009010</subfield><subfield code="z">(OCoLC)1105751123</subfield><subfield code="z">(OCoLC)1113794077</subfield><subfield code="z">(OCoLC)1123225194</subfield><subfield code="z">(OCoLC)1127922090</subfield><subfield code="z">(OCoLC)1154215263</subfield><subfield code="z">(OCoLC)1159660046</subfield><subfield code="z">(OCoLC)1162255425</subfield><subfield code="z">(OCoLC)1167615300</subfield><subfield code="z">(OCoLC)1188970397</subfield><subfield code="z">(OCoLC)1194836232</subfield><subfield code="z">(OCoLC)1203229806</subfield><subfield code="z">(OCoLC)1241907379</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.A32 1999eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in kernel methods :</subfield><subfield code="b">support vector learning /</subfield><subfield code="c">edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©1999.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 376 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 353-371) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [and others] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kernel functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85072061</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Algorithms</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000465</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Noyaux (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Kunstmatige intelligentie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Algoritmen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Patroonherkenning.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Functies (wiskunde)</subfield><subfield code="0">(NL-LeOCL)078510333</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Machine-learning.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Congressen (vorm)</subfield><subfield code="0">(NL-LeOCL)088142469</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schölkopf, Bernhard.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98071318</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burges, Christopher J. C.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98071320</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smola, Alexander J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98071321</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Advances in kernel methods (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGt98kDjvVJMbHpHqvQ76q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Advances in kernel methods.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©1999</subfield><subfield code="z">0262194163</subfield><subfield code="w">(DLC) 98040302</subfield><subfield code="w">(OCoLC)39706952</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">421</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2307963</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10835639</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Congressen (vorm) (NL-LeOCL)088142469 gtt |
genre_facet | Congressen (vorm) |
id | ZDB-4-EBU-ocm44957981 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:48:55Z |
institution | BVB |
isbn | 0585128294 9780585128290 9780262194167 0262194163 9780262283199 0262283190 |
language | English |
oclc_num | 44957981 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 376 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | MIT Press, |
record_format | marc |
spelling | Advances in kernel methods : support vector learning / edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola. Cambridge, Mass. : MIT Press, ©1999. ©1999 1 online resource (vii, 376 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 353-371) and index. Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [and others] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller. Print version record. English. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie. gtt Algoritmen. gtt Patroonherkenning. gtt Functies (wiskunde) (NL-LeOCL)078510333 gtt Machine-learning. gtt Congressen (vorm) (NL-LeOCL)088142469 gtt Schölkopf, Bernhard. http://id.loc.gov/authorities/names/n98071318 Burges, Christopher J. C. http://id.loc.gov/authorities/names/n98071320 Smola, Alexander J. http://id.loc.gov/authorities/names/n98071321 has work: Advances in kernel methods (Text) https://id.oclc.org/worldcat/entity/E39PCGt98kDjvVJMbHpHqvQ76q https://id.oclc.org/worldcat/ontology/hasWork Print version: Advances in kernel methods. Cambridge, Mass. : MIT Press, ©1999 0262194163 (DLC) 98040302 (OCoLC)39706952 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421 Volltext |
spellingShingle | Advances in kernel methods : support vector learning / Preface -- Introduction to support vector learning -- Roadmap -- Three remarks on the support vector method of function estimation / Valdimir Vapnik -- Generalization performance of support vector machines and other pattern classifiers / Peter Bartlett and John Shawe-Taylor -- Bayesian voting schemes and large margin classifiers / Nello Cristianini and John Shawe-Taylor -- Support vector machines, reproducing kernal Hilbert spaces, and randomized GACV / Grace Wahba -- Geometry and invariance in kernel based methods / Christopher J.C. Burgess -- On the annealed VC entropy for margin classifiers : a statistical mechanics study / Manfred Opper -- Entropy numbers, operators and support vector kernels / Robert C. Williamson, Alex J. Smola and Berhard Schölkopf -- Solving the quadratic programming problem arising in support vector classification / Linda Kaufman -- Making large-scale support vector machine learning practical / Thorsten Joachims -- Fast training of support vector machines using sequential minimal optimization / John C. Platt -- Support vector machines for dynamic reconstruction of a chaotic system / David Mattera and Simon Haykin -- Using support vector machines for time series prediction / Klaus-Robert Müller . [and others] -- Pairwise classification and support vector machines / Ulrich Kressel -- Reducing the run-time complexity in support vector machines / Edgar E. Osuna and Federico Girosi -- Support vector regression with ANOVA decomposition kernels / Mark O. Stitson . [and others] -- Support vector density estimation / Jason Weston . [and others] -- Combining support vector and mathematical programming methods for classification / Kristin P. Bennett -- Kernel principal component analysis / Berhard Schölkopf, Alex J. Smola and Klaus-Robert Müller. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie. gtt Algoritmen. gtt Patroonherkenning. gtt Functies (wiskunde) (NL-LeOCL)078510333 gtt Machine-learning. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85003487 http://id.loc.gov/authorities/subjects/sh85072061 https://id.nlm.nih.gov/mesh/D000465 https://id.nlm.nih.gov/mesh/D000069550 (NL-LeOCL)078510333 (NL-LeOCL)088142469 |
title | Advances in kernel methods : support vector learning / |
title_auth | Advances in kernel methods : support vector learning / |
title_exact_search | Advances in kernel methods : support vector learning / |
title_full | Advances in kernel methods : support vector learning / edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola. |
title_fullStr | Advances in kernel methods : support vector learning / edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola. |
title_full_unstemmed | Advances in kernel methods : support vector learning / edited by Bernhard Schölkopf, Christopher J.C. Burges, Alexander J. Smola. |
title_short | Advances in kernel methods : |
title_sort | advances in kernel methods support vector learning |
title_sub | support vector learning / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Machine learning fast Kunstmatige intelligentie. gtt Algoritmen. gtt Patroonherkenning. gtt Functies (wiskunde) (NL-LeOCL)078510333 gtt Machine-learning. gtt |
topic_facet | Machine learning. Algorithms. Kernel functions. Algorithms Machine Learning Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Kernel functions Machine learning Kunstmatige intelligentie. Algoritmen. Patroonherkenning. Functies (wiskunde) Machine-learning. Congressen (vorm) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421 |
work_keys_str_mv | AT scholkopfbernhard advancesinkernelmethodssupportvectorlearning AT burgeschristopherjc advancesinkernelmethodssupportvectorlearning AT smolaalexanderj advancesinkernelmethodssupportvectorlearning |