Neural network learning and expert systems /:
"Most neural network programs for personal computers simply control a set of fixed, canned network-layer algorithms with pulldown menus. This new tutorial offers hands-on neural network experiments with a different approach. A simple matrix language lets users create their own neural networks a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©1993.
©1993 |
Schriftenreihe: | Bradford Book Ser.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Most neural network programs for personal computers simply control a set of fixed, canned network-layer algorithms with pulldown menus. This new tutorial offers hands-on neural network experiments with a different approach. A simple matrix language lets users create their own neural networks and combine networks, and this is the only currently available software permitting combined simulation of neural networks together with other dynamic systems such as robots or physiological models. The enclosed student version of DESIRE/NEUNET differs from the full system only in the size of its data area and includes a screen editor, compiler, color graphics, help screens, and ready-to-run examples. Users can also add their own help screens and interactive menus. The book provides an introduction to neural networks and simulation, a tutorial on the software, and many complete programs including several backpropagation schemes, creeping random search, competitive learning with and without adaptive-resonance function and "conscience," counterpropagation, nonlinear Grossberg-type neurons, Hopfield-type and bidirectional associative memories, predictors, function learning, biological clocks, system identification, and more. In addition, the book introduces a simple, integrated environment for programming, displays, and report preparation. Even differential equations are entered in ordinary mathematical notation. Users need not learn C or LISP to program nonlinear neuron models. To permit truly interactive experiments, the extra-fast compilation is unnoticeable, and simulations execute faster than PC FORTRAN. The nearly 90 illustrations include block diagrams, computer programs, and simulation-output graphs." |
Beschreibung: | "Granino A. Kom has been a Professor of Electrical Engineering at the University of Arizona and has worked in the aerospace industry for a decade. He is the author of ten other engineering texts and handbooks." "A Bradford Book." |
Beschreibung: | 1 online resource (xvi, 365 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 349-359) and index. |
ISBN: | 0585040281 9780585040288 0262071452 9780262071451 9780262273404 0262273403 9780262527897 0262527898 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocm43474728 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 000112s1993 maua ob 001 0 eng d | ||
010 | |a 92020864 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d OCL |d YDXCP |d OCLCQ |d COO |d CUS |d MYG |d C6I |d ZCU |d IEEEE |d OCLCF |d OCLCQ |d SLY |d OCLCQ |d UIU |d HRM |d OCLCQ |d I8M |d LIP |d OCLCQ |d RRP |d ROC |d MNS |d RCC |d UUM |d INARC |d VTS |d CEF |d XOS |d XQH |d MUO |d MERER |d OCLCQ |d INT |d OCLCQ |d AU@ |d WYU |d MITPR |d STF |d YOU |d UKBTH |d EBLCP |d OCLCQ |d OCLCO |d OCLCQ |d VT2 |d LUN |d SFB |d QGK |d N$T |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 71799382 |a 507352200 |a 827304137 |a 880191203 |a 961654120 |a 962721701 |a 970468128 |a 990413972 |a 1020515049 |a 1036794350 |a 1053008442 |a 1063820884 |a 1112947962 |a 1128470008 |a 1129214890 |a 1159639803 |a 1167309211 |a 1167528506 | ||
020 | |a 0585040281 |q (electronic bk.) | ||
020 | |a 9780585040288 |q (electronic bk.) | ||
020 | |a 0262071452 | ||
020 | |a 9780262071451 | ||
020 | |a 9780262273404 |q (electronic bk.) | ||
020 | |a 0262273403 |q (electronic bk.) | ||
020 | |a 9780262527897 | ||
020 | |a 0262527898 | ||
020 | |z 9780262273400 | ||
035 | |a (OCoLC)43474728 |z (OCoLC)71799382 |z (OCoLC)507352200 |z (OCoLC)827304137 |z (OCoLC)880191203 |z (OCoLC)961654120 |z (OCoLC)962721701 |z (OCoLC)970468128 |z (OCoLC)990413972 |z (OCoLC)1020515049 |z (OCoLC)1036794350 |z (OCoLC)1053008442 |z (OCoLC)1063820884 |z (OCoLC)1112947962 |z (OCoLC)1128470008 |z (OCoLC)1129214890 |z (OCoLC)1159639803 |z (OCoLC)1167309211 |z (OCoLC)1167528506 | ||
037 | |a 4931 |b MIT Press | ||
037 | |a 9780262273404 |b MIT Press | ||
050 | 4 | |a QA76.87 |b .G35 1993eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 20 | |
084 | |a TP183 |2 clc | ||
084 | |a TP182 |2 clc | ||
084 | |a TP18 |2 clc | ||
049 | |a MAIN | ||
100 | 1 | |a Gallant, Stephen I. |0 http://id.loc.gov/authorities/names/n92058126 | |
245 | 1 | 0 | |a Neural network learning and expert systems / |c Stephen I. Gallant. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©1993. | ||
264 | 4 | |c ©1993 | |
300 | |a 1 online resource (xvi, 365 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a A Bradford Book Ser. | |
500 | |a "Granino A. Kom has been a Professor of Electrical Engineering at the University of Arizona and has worked in the aerospace industry for a decade. He is the author of ten other engineering texts and handbooks." | ||
500 | |a "A Bradford Book." | ||
504 | |a Includes bibliographical references (pages 349-359) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |g 1. |t Introduction and important definitions -- |g 2. |t Representation issues -- |g 3. |t Perceptron learning and the pocket algorithm -- |g 4. |t Winner-take-all groups or linear machines -- |g 5. |t Autoassociators and one-shot learning -- |g 6. |t Mean squared error (MSE) algorithms -- |g 7. |t Unsupervised learning -- |g 8. |t The distributed method and radial basis functions -- |g 9. |t Computational learning theory and the BRD algorithm -- |g 10. |t Constructive algorithms -- |g 11. |t Backpropagation -- |g 12. |t Backpropagation : variations and applications -- |g 13. |t Simulated annealing and boltzmann machines -- |g 14. |t Expert systems and neural networks -- |g 15. |t Details of the MACIE system -- |g 16. |t Noise, redundancy, fault detection, and bayesian decision theory -- |g 17. |t Extracting rules from networks. |
520 | 3 | |a "Most neural network programs for personal computers simply control a set of fixed, canned network-layer algorithms with pulldown menus. This new tutorial offers hands-on neural network experiments with a different approach. A simple matrix language lets users create their own neural networks and combine networks, and this is the only currently available software permitting combined simulation of neural networks together with other dynamic systems such as robots or physiological models. The enclosed student version of DESIRE/NEUNET differs from the full system only in the size of its data area and includes a screen editor, compiler, color graphics, help screens, and ready-to-run examples. Users can also add their own help screens and interactive menus. The book provides an introduction to neural networks and simulation, a tutorial on the software, and many complete programs including several backpropagation schemes, creeping random search, competitive learning with and without adaptive-resonance function and "conscience," counterpropagation, nonlinear Grossberg-type neurons, Hopfield-type and bidirectional associative memories, predictors, function learning, biological clocks, system identification, and more. In addition, the book introduces a simple, integrated environment for programming, displays, and report preparation. Even differential equations are entered in ordinary mathematical notation. Users need not learn C or LISP to program nonlinear neuron models. To permit truly interactive experiments, the extra-fast compilation is unnoticeable, and simulations execute faster than PC FORTRAN. The nearly 90 illustrations include block diagrams, computer programs, and simulation-output graphs." | |
546 | |a English. | ||
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 0 | |a Expert systems (Computer science) |0 http://id.loc.gov/authorities/subjects/sh85046450 | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Systèmes experts (Informatique) | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 0 | 7 | |a Expert systems (Computer science) |2 cct |
650 | 0 | 7 | |a Inteligencia Artificial. |2 cct |
650 | 0 | 7 | |a Neural networks (Computer science) |2 cct |
650 | 7 | |a Expert systems (Computer science) |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Inteligencia Artificial. |2 larpcal | |
650 | 7 | |a Systèmes experts (informatique) |2 ram | |
650 | 7 | |a Réseaux neuronaux (informatique) |2 ram | |
650 | 7 | |a Intelligence artificielle. |2 ram | |
653 | 0 | |a Expert systems. | |
653 | |a COMPUTER SCIENCE/Machine Learning & Neural Networks | ||
758 | |i has work: |a Neural network learning and expert systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFwYkK39XYqYJWvjykfj83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Gallant, Stephen I. |t Neural network learning and expert systems. |d Cambridge, Mass. : MIT Press, ©1993 |z 0262071452 |w (DLC) 92020864 |w (OCoLC)26094686 |
830 | 0 | |a Bradford Book Ser. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3114 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5966203 | ||
938 | |a EBSCOhost |b EBSC |n 3114 | ||
938 | |a Internet Archive |b INAR |n neuralnetworklea00gall_0 | ||
938 | |a YBP Library Services |b YANK |n 2303885 | ||
938 | |a YBP Library Services |b YANK |n 10832842 | ||
938 | |a IEEE |b IEEE |n 6267393 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocm43474728 |
---|---|
_version_ | 1816796894037278720 |
adam_text | |
any_adam_object | |
author | Gallant, Stephen I. |
author_GND | http://id.loc.gov/authorities/names/n92058126 |
author_facet | Gallant, Stephen I. |
author_role | |
author_sort | Gallant, Stephen I. |
author_variant | s i g si sig |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 .G35 1993eb |
callnumber-search | QA76.87 .G35 1993eb |
callnumber-sort | QA 276.87 G35 41993EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | Introduction and important definitions -- Representation issues -- Perceptron learning and the pocket algorithm -- Winner-take-all groups or linear machines -- Autoassociators and one-shot learning -- Mean squared error (MSE) algorithms -- Unsupervised learning -- The distributed method and radial basis functions -- Computational learning theory and the BRD algorithm -- Constructive algorithms -- Backpropagation -- Backpropagation : variations and applications -- Simulated annealing and boltzmann machines -- Expert systems and neural networks -- Details of the MACIE system -- Noise, redundancy, fault detection, and bayesian decision theory -- Extracting rules from networks. |
ctrlnum | (OCoLC)43474728 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07115cam a2200913 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocm43474728 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">000112s1993 maua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 92020864 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">CUS</subfield><subfield code="d">MYG</subfield><subfield code="d">C6I</subfield><subfield code="d">ZCU</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">HRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">I8M</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">RRP</subfield><subfield code="d">ROC</subfield><subfield code="d">MNS</subfield><subfield code="d">RCC</subfield><subfield code="d">UUM</subfield><subfield code="d">INARC</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">XOS</subfield><subfield code="d">XQH</subfield><subfield code="d">MUO</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">WYU</subfield><subfield code="d">MITPR</subfield><subfield code="d">STF</subfield><subfield code="d">YOU</subfield><subfield code="d">UKBTH</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">LUN</subfield><subfield code="d">SFB</subfield><subfield code="d">QGK</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">71799382</subfield><subfield code="a">507352200</subfield><subfield code="a">827304137</subfield><subfield code="a">880191203</subfield><subfield code="a">961654120</subfield><subfield code="a">962721701</subfield><subfield code="a">970468128</subfield><subfield code="a">990413972</subfield><subfield code="a">1020515049</subfield><subfield code="a">1036794350</subfield><subfield code="a">1053008442</subfield><subfield code="a">1063820884</subfield><subfield code="a">1112947962</subfield><subfield code="a">1128470008</subfield><subfield code="a">1129214890</subfield><subfield code="a">1159639803</subfield><subfield code="a">1167309211</subfield><subfield code="a">1167528506</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585040281</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585040288</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262071452</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262071451</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262273404</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262273403</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262527897</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262527898</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262273400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43474728</subfield><subfield code="z">(OCoLC)71799382</subfield><subfield code="z">(OCoLC)507352200</subfield><subfield code="z">(OCoLC)827304137</subfield><subfield code="z">(OCoLC)880191203</subfield><subfield code="z">(OCoLC)961654120</subfield><subfield code="z">(OCoLC)962721701</subfield><subfield code="z">(OCoLC)970468128</subfield><subfield code="z">(OCoLC)990413972</subfield><subfield code="z">(OCoLC)1020515049</subfield><subfield code="z">(OCoLC)1036794350</subfield><subfield code="z">(OCoLC)1053008442</subfield><subfield code="z">(OCoLC)1063820884</subfield><subfield code="z">(OCoLC)1112947962</subfield><subfield code="z">(OCoLC)1128470008</subfield><subfield code="z">(OCoLC)1129214890</subfield><subfield code="z">(OCoLC)1159639803</subfield><subfield code="z">(OCoLC)1167309211</subfield><subfield code="z">(OCoLC)1167528506</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">4931</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780262273404</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.87</subfield><subfield code="b">.G35 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TP183</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TP182</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TP18</subfield><subfield code="2">clc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallant, Stephen I.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92058126</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural network learning and expert systems /</subfield><subfield code="c">Stephen I. Gallant.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©1993.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 365 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">A Bradford Book Ser.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Granino A. Kom has been a Professor of Electrical Engineering at the University of Arizona and has worked in the aerospace industry for a decade. He is the author of ten other engineering texts and handbooks."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"A Bradford Book."</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 349-359) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Introduction and important definitions --</subfield><subfield code="g">2.</subfield><subfield code="t">Representation issues --</subfield><subfield code="g">3.</subfield><subfield code="t">Perceptron learning and the pocket algorithm --</subfield><subfield code="g">4.</subfield><subfield code="t">Winner-take-all groups or linear machines --</subfield><subfield code="g">5.</subfield><subfield code="t">Autoassociators and one-shot learning --</subfield><subfield code="g">6.</subfield><subfield code="t">Mean squared error (MSE) algorithms --</subfield><subfield code="g">7.</subfield><subfield code="t">Unsupervised learning --</subfield><subfield code="g">8.</subfield><subfield code="t">The distributed method and radial basis functions --</subfield><subfield code="g">9.</subfield><subfield code="t">Computational learning theory and the BRD algorithm --</subfield><subfield code="g">10.</subfield><subfield code="t">Constructive algorithms --</subfield><subfield code="g">11.</subfield><subfield code="t">Backpropagation --</subfield><subfield code="g">12.</subfield><subfield code="t">Backpropagation : variations and applications --</subfield><subfield code="g">13.</subfield><subfield code="t">Simulated annealing and boltzmann machines --</subfield><subfield code="g">14.</subfield><subfield code="t">Expert systems and neural networks --</subfield><subfield code="g">15.</subfield><subfield code="t">Details of the MACIE system --</subfield><subfield code="g">16.</subfield><subfield code="t">Noise, redundancy, fault detection, and bayesian decision theory --</subfield><subfield code="g">17.</subfield><subfield code="t">Extracting rules from networks.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Most neural network programs for personal computers simply control a set of fixed, canned network-layer algorithms with pulldown menus. This new tutorial offers hands-on neural network experiments with a different approach. A simple matrix language lets users create their own neural networks and combine networks, and this is the only currently available software permitting combined simulation of neural networks together with other dynamic systems such as robots or physiological models. The enclosed student version of DESIRE/NEUNET differs from the full system only in the size of its data area and includes a screen editor, compiler, color graphics, help screens, and ready-to-run examples. Users can also add their own help screens and interactive menus. The book provides an introduction to neural networks and simulation, a tutorial on the software, and many complete programs including several backpropagation schemes, creeping random search, competitive learning with and without adaptive-resonance function and "conscience," counterpropagation, nonlinear Grossberg-type neurons, Hopfield-type and bidirectional associative memories, predictors, function learning, biological clocks, system identification, and more. In addition, the book introduces a simple, integrated environment for programming, displays, and report preparation. Even differential equations are entered in ordinary mathematical notation. Users need not learn C or LISP to program nonlinear neuron models. To permit truly interactive experiments, the extra-fast compilation is unnoticeable, and simulations execute faster than PC FORTRAN. The nearly 90 illustrations include block diagrams, computer programs, and simulation-output graphs."</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Expert systems (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85046450</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes experts (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Expert systems (Computer science)</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inteligencia Artificial.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expert systems (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inteligencia Artificial.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systèmes experts (informatique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux neuronaux (informatique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligence artificielle.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="653" ind1="0" ind2=" "><subfield code="a">Expert systems.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/Machine Learning & Neural Networks</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Neural network learning and expert systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFwYkK39XYqYJWvjykfj83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gallant, Stephen I.</subfield><subfield code="t">Neural network learning and expert systems.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©1993</subfield><subfield code="z">0262071452</subfield><subfield code="w">(DLC) 92020864</subfield><subfield code="w">(OCoLC)26094686</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Bradford Book Ser.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5966203</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3114</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">neuralnetworklea00gall_0</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2303885</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10832842</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">IEEE</subfield><subfield code="b">IEEE</subfield><subfield code="n">6267393</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocm43474728 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:48:55Z |
institution | BVB |
isbn | 0585040281 9780585040288 0262071452 9780262071451 9780262273404 0262273403 9780262527897 0262527898 |
language | English |
lccn | 92020864 |
oclc_num | 43474728 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 365 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | MIT Press, |
record_format | marc |
series | Bradford Book Ser. |
series2 | A Bradford Book Ser. |
spelling | Gallant, Stephen I. http://id.loc.gov/authorities/names/n92058126 Neural network learning and expert systems / Stephen I. Gallant. Cambridge, Mass. : MIT Press, ©1993. ©1993 1 online resource (xvi, 365 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier A Bradford Book Ser. "Granino A. Kom has been a Professor of Electrical Engineering at the University of Arizona and has worked in the aerospace industry for a decade. He is the author of ten other engineering texts and handbooks." "A Bradford Book." Includes bibliographical references (pages 349-359) and index. Print version record. 1. Introduction and important definitions -- 2. Representation issues -- 3. Perceptron learning and the pocket algorithm -- 4. Winner-take-all groups or linear machines -- 5. Autoassociators and one-shot learning -- 6. Mean squared error (MSE) algorithms -- 7. Unsupervised learning -- 8. The distributed method and radial basis functions -- 9. Computational learning theory and the BRD algorithm -- 10. Constructive algorithms -- 11. Backpropagation -- 12. Backpropagation : variations and applications -- 13. Simulated annealing and boltzmann machines -- 14. Expert systems and neural networks -- 15. Details of the MACIE system -- 16. Noise, redundancy, fault detection, and bayesian decision theory -- 17. Extracting rules from networks. "Most neural network programs for personal computers simply control a set of fixed, canned network-layer algorithms with pulldown menus. This new tutorial offers hands-on neural network experiments with a different approach. A simple matrix language lets users create their own neural networks and combine networks, and this is the only currently available software permitting combined simulation of neural networks together with other dynamic systems such as robots or physiological models. The enclosed student version of DESIRE/NEUNET differs from the full system only in the size of its data area and includes a screen editor, compiler, color graphics, help screens, and ready-to-run examples. Users can also add their own help screens and interactive menus. The book provides an introduction to neural networks and simulation, a tutorial on the software, and many complete programs including several backpropagation schemes, creeping random search, competitive learning with and without adaptive-resonance function and "conscience," counterpropagation, nonlinear Grossberg-type neurons, Hopfield-type and bidirectional associative memories, predictors, function learning, biological clocks, system identification, and more. In addition, the book introduces a simple, integrated environment for programming, displays, and report preparation. Even differential equations are entered in ordinary mathematical notation. Users need not learn C or LISP to program nonlinear neuron models. To permit truly interactive experiments, the extra-fast compilation is unnoticeable, and simulations execute faster than PC FORTRAN. The nearly 90 illustrations include block diagrams, computer programs, and simulation-output graphs." English. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Expert systems (Computer science) http://id.loc.gov/authorities/subjects/sh85046450 Réseaux neuronaux (Informatique) Systèmes experts (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Expert systems (Computer science) cct Inteligencia Artificial. cct Neural networks (Computer science) cct Expert systems (Computer science) fast Neural networks (Computer science) fast Inteligencia Artificial. larpcal Systèmes experts (informatique) ram Réseaux neuronaux (informatique) ram Intelligence artificielle. ram Expert systems. COMPUTER SCIENCE/Machine Learning & Neural Networks has work: Neural network learning and expert systems (Text) https://id.oclc.org/worldcat/entity/E39PCFwYkK39XYqYJWvjykfj83 https://id.oclc.org/worldcat/ontology/hasWork Print version: Gallant, Stephen I. Neural network learning and expert systems. Cambridge, Mass. : MIT Press, ©1993 0262071452 (DLC) 92020864 (OCoLC)26094686 Bradford Book Ser. FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3114 Volltext |
spellingShingle | Gallant, Stephen I. Neural network learning and expert systems / Bradford Book Ser. Introduction and important definitions -- Representation issues -- Perceptron learning and the pocket algorithm -- Winner-take-all groups or linear machines -- Autoassociators and one-shot learning -- Mean squared error (MSE) algorithms -- Unsupervised learning -- The distributed method and radial basis functions -- Computational learning theory and the BRD algorithm -- Constructive algorithms -- Backpropagation -- Backpropagation : variations and applications -- Simulated annealing and boltzmann machines -- Expert systems and neural networks -- Details of the MACIE system -- Noise, redundancy, fault detection, and bayesian decision theory -- Extracting rules from networks. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Expert systems (Computer science) http://id.loc.gov/authorities/subjects/sh85046450 Réseaux neuronaux (Informatique) Systèmes experts (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Expert systems (Computer science) cct Inteligencia Artificial. cct Neural networks (Computer science) cct Expert systems (Computer science) fast Neural networks (Computer science) fast Inteligencia Artificial. larpcal Systèmes experts (informatique) ram Réseaux neuronaux (informatique) ram Intelligence artificielle. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh90001937 http://id.loc.gov/authorities/subjects/sh85046450 |
title | Neural network learning and expert systems / |
title_alt | Introduction and important definitions -- Representation issues -- Perceptron learning and the pocket algorithm -- Winner-take-all groups or linear machines -- Autoassociators and one-shot learning -- Mean squared error (MSE) algorithms -- Unsupervised learning -- The distributed method and radial basis functions -- Computational learning theory and the BRD algorithm -- Constructive algorithms -- Backpropagation -- Backpropagation : variations and applications -- Simulated annealing and boltzmann machines -- Expert systems and neural networks -- Details of the MACIE system -- Noise, redundancy, fault detection, and bayesian decision theory -- Extracting rules from networks. |
title_auth | Neural network learning and expert systems / |
title_exact_search | Neural network learning and expert systems / |
title_full | Neural network learning and expert systems / Stephen I. Gallant. |
title_fullStr | Neural network learning and expert systems / Stephen I. Gallant. |
title_full_unstemmed | Neural network learning and expert systems / Stephen I. Gallant. |
title_short | Neural network learning and expert systems / |
title_sort | neural network learning and expert systems |
topic | Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Expert systems (Computer science) http://id.loc.gov/authorities/subjects/sh85046450 Réseaux neuronaux (Informatique) Systèmes experts (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Expert systems (Computer science) cct Inteligencia Artificial. cct Neural networks (Computer science) cct Expert systems (Computer science) fast Neural networks (Computer science) fast Inteligencia Artificial. larpcal Systèmes experts (informatique) ram Réseaux neuronaux (informatique) ram Intelligence artificielle. ram |
topic_facet | Neural networks (Computer science) Expert systems (Computer science) Réseaux neuronaux (Informatique) Systèmes experts (Informatique) COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Inteligencia Artificial. Systèmes experts (informatique) Réseaux neuronaux (informatique) Intelligence artificielle. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3114 |
work_keys_str_mv | AT gallantstepheni neuralnetworklearningandexpertsystems |