Engineering UAS applications :: sensor fusion, machine vision, and mission management. /
Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms. |
Beschreibung: | Description based upon print version of record. 5.4.3 Object Detection Example |
Beschreibung: | 1 online resource (317 p.) |
ISBN: | 1630819840 9781630819842 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1399168431 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 230930s2023 mau o 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |c EBLCP |d N$T |d IEEEE |d OCLCO |d OCLCF |d OCLCO |d BNG | ||
020 | |a 1630819840 | ||
020 | |a 9781630819842 |q (electronic bk.) | ||
035 | |a (OCoLC)1399168431 | ||
037 | |a 10303007 |b IEEE | ||
050 | 4 | |a TJ213 |b .G37 2023 | |
082 | 7 | |a 629.8 |2 23/eng/20231009 | |
049 | |a MAIN | ||
100 | 1 | |a García, Jesús, |e author. |0 http://id.loc.gov/authorities/names/no2019162566 | |
245 | 1 | 0 | |a Engineering UAS applications : |b sensor fusion, machine vision, and mission management. / |c Jesús Garcia, |
264 | 0 | |a Boston : |b Artech House, |c 2023. | |
300 | |a 1 online resource (317 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Description based upon print version of record. | ||
505 | 0 | |a Intro -- Engineering UAS Applications: Sensor Fusion, Machine Vision,and Mission Management -- Contents -- Preface -- 1 Introduction and State of the Art -- 1.1 Introduction and Types of Unmanned Aerial Systems -- 1.2 Main Technologies Used in UAS -- 1.2.1 Navigation -- 1.2.2 Communications -- 1.2.3 Machine Vision -- 1.2.4 Coordination: Swarms of UAVs and Applications -- 1.2.5 Simulation -- 1.3 Summary and Structure of This Book -- References -- 2 Components of UAS -- 2.1 Introduction -- 2.2 Flight Controller -- 2.2.1 Logic Components -- 2.2.2 Physical Components -- 2.3 Communications | |
505 | 8 | |a 2.3.1 Radio Communication Technologies -- 2.3.2 Communication Protocols -- 2.3.3 UAV Messaging Protocols -- 2.4 Payload -- 2.4.1 Payload Types -- 2.4.2 Payload Positioning -- 2.5 Mission Management Units -- 2.5.1 Ground Station -- 2.5.2 Companion Computer -- 2.5.3 Control APIs -- 2.6 Obstacle Avoidance Use Case -- 2.6.1 Phase 1: Assembly of the Physical Components -- 2.6.2 Phase 2: Setting Up the Software -- 2.6.3 Phase 3: Mission Design from the Ground Station -- 2.6.4 Phase 4: Mission Start -- 2.6.5 Phase 5: Obstacle Detection and Avoidance -- References -- 4 Navigation Systems of UAS | |
505 | 8 | |a 4.1 Introduction -- 4.2 Reference Frame Systems -- 4.2.1 Global Frames (WGS84 and ECEF) and Local Frame at Tangent Point ENU and NED -- 4.2.2 Geodetic to ECEF Transformation -- 4.2.3 ECEF to Geodetic Transformation -- 4.2.4 ECEF to Local Cartesian (ENU and NED) Transformation -- 4.2.5 Local Cartesian (ENU or NED) to the ECEF Transformation -- 4.3 Attitude Mathematical Concepts -- 4.3.1 Attitude Representation -- 4.3.2 Attitude Kinematics -- 4.4 Fusion of the INS and GNSS -- 4.4.1 State Estimation -- 4.4.2 INS State Vector -- 4.4.3 GNSS State Vector -- 4.4.4 Fusion of the INS and GNSS | |
505 | 8 | |a 4.5 Application: Search for the Best Navigation Parameters -- 4.5.1 Fusion Quality Metrics -- 4.5.2 PX4 Navigation System -- 4.5.3 Search Best EKF Parameters -- References -- 3 Simulation of UAS -- 3.1 Introduction -- 3.2 From Development to Reality -- 3.2.1 Simulation Software -- 3.2.2 SITL -- 3.2.3 HITL -- 3.2.4 External HITL -- 3.2.5 Simulation in Hardware -- 3.2.6 Vehicle in the Loop -- 3.3 UAS Simulators -- 3.3.1 Current Simulators -- 3.3.2 Simulator Comparison -- 3.4 AirSim Simulation Examples -- 3.4.1 Framework Required Programs -- 3.4.2 Simulation Environment -- 3.4.3 AirSim Settings | |
505 | 8 | |a 3.4.4 SimpleFlight Simulation -- 3.4.5 Mission 1: Using SimpleFlight SITL -- 3.4.6 PX4 Simulation -- 3.4.7 Mission 2: Using PX4 SITL -- 3.4.8 Mission 3: Using PX4 HITL -- 3.4.9 Flight Analysis -- References -- 5 Machine Vision Systems of UAS -- 5.1 Introduction -- 5.2 Computer Vision System -- 5.2.1 Pinhole Camera -- 5.2.2 Camera Calibration -- 5.2.3 AirSim Camera Calibration -- 5.3 Image Stabilization -- 5.3.1 Mechanical Stabilization -- 5.3.2 Computational Stabilization -- 5.4 Object Detection -- 5.4.1 Problems of Object Detection -- 5.4.2 Evaluating Object Detection | |
500 | |a 5.4.3 Object Detection Example | ||
520 | |a Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms. | ||
650 | 0 | |a Robotics. |0 http://id.loc.gov/authorities/subjects/sh85114628 | |
650 | 0 | |a Vehicles, Remotely piloted. |0 http://id.loc.gov/authorities/subjects/sh85142539 | |
650 | 6 | |a Robotique. | |
650 | 6 | |a Véhicules télécommandés. | |
650 | 7 | |a Robotics |2 fast | |
650 | 7 | |a Vehicles, Remotely piloted |2 fast | |
700 | 1 | |a Molina, José M., |e author. | |
700 | 1 | |a Llerena, Juan Pedro, |e author. |0 http://id.loc.gov/authorities/names/no2023129341 | |
700 | 1 | |a Amigo, Daniel, |e author. |0 http://id.loc.gov/authorities/names/no2023129344 | |
700 | 1 | |a Sanchez Pedroche, David, |e author. |0 http://id.loc.gov/authorities/names/no2023129345 | |
776 | 0 | 8 | |i Print version: |a Garcia, Jesús |t Engineering UAS Applications: Sensor Fusion, Machine Vision and Mission Management |d Norwood : Artech House,c2023 |z 9781630819835 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3675084 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL30747338 | ||
938 | |a EBSCOhost |b EBSC |n 3675084 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1399168431 |
---|---|
_version_ | 1816882571247616000 |
adam_text | |
any_adam_object | |
author | García, Jesús Molina, José M. Llerena, Juan Pedro Amigo, Daniel Sanchez Pedroche, David |
author_GND | http://id.loc.gov/authorities/names/no2019162566 http://id.loc.gov/authorities/names/no2023129341 http://id.loc.gov/authorities/names/no2023129344 http://id.loc.gov/authorities/names/no2023129345 |
author_facet | García, Jesús Molina, José M. Llerena, Juan Pedro Amigo, Daniel Sanchez Pedroche, David |
author_role | aut aut aut aut aut |
author_sort | García, Jesús |
author_variant | j g jg j m m jm jmm j p l jp jpl d a da p d s pd pds |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TJ213 |
callnumber-raw | TJ213 .G37 2023 |
callnumber-search | TJ213 .G37 2023 |
callnumber-sort | TJ 3213 G37 42023 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
collection | ZDB-4-EBA |
contents | Intro -- Engineering UAS Applications: Sensor Fusion, Machine Vision,and Mission Management -- Contents -- Preface -- 1 Introduction and State of the Art -- 1.1 Introduction and Types of Unmanned Aerial Systems -- 1.2 Main Technologies Used in UAS -- 1.2.1 Navigation -- 1.2.2 Communications -- 1.2.3 Machine Vision -- 1.2.4 Coordination: Swarms of UAVs and Applications -- 1.2.5 Simulation -- 1.3 Summary and Structure of This Book -- References -- 2 Components of UAS -- 2.1 Introduction -- 2.2 Flight Controller -- 2.2.1 Logic Components -- 2.2.2 Physical Components -- 2.3 Communications 2.3.1 Radio Communication Technologies -- 2.3.2 Communication Protocols -- 2.3.3 UAV Messaging Protocols -- 2.4 Payload -- 2.4.1 Payload Types -- 2.4.2 Payload Positioning -- 2.5 Mission Management Units -- 2.5.1 Ground Station -- 2.5.2 Companion Computer -- 2.5.3 Control APIs -- 2.6 Obstacle Avoidance Use Case -- 2.6.1 Phase 1: Assembly of the Physical Components -- 2.6.2 Phase 2: Setting Up the Software -- 2.6.3 Phase 3: Mission Design from the Ground Station -- 2.6.4 Phase 4: Mission Start -- 2.6.5 Phase 5: Obstacle Detection and Avoidance -- References -- 4 Navigation Systems of UAS 4.1 Introduction -- 4.2 Reference Frame Systems -- 4.2.1 Global Frames (WGS84 and ECEF) and Local Frame at Tangent Point ENU and NED -- 4.2.2 Geodetic to ECEF Transformation -- 4.2.3 ECEF to Geodetic Transformation -- 4.2.4 ECEF to Local Cartesian (ENU and NED) Transformation -- 4.2.5 Local Cartesian (ENU or NED) to the ECEF Transformation -- 4.3 Attitude Mathematical Concepts -- 4.3.1 Attitude Representation -- 4.3.2 Attitude Kinematics -- 4.4 Fusion of the INS and GNSS -- 4.4.1 State Estimation -- 4.4.2 INS State Vector -- 4.4.3 GNSS State Vector -- 4.4.4 Fusion of the INS and GNSS 4.5 Application: Search for the Best Navigation Parameters -- 4.5.1 Fusion Quality Metrics -- 4.5.2 PX4 Navigation System -- 4.5.3 Search Best EKF Parameters -- References -- 3 Simulation of UAS -- 3.1 Introduction -- 3.2 From Development to Reality -- 3.2.1 Simulation Software -- 3.2.2 SITL -- 3.2.3 HITL -- 3.2.4 External HITL -- 3.2.5 Simulation in Hardware -- 3.2.6 Vehicle in the Loop -- 3.3 UAS Simulators -- 3.3.1 Current Simulators -- 3.3.2 Simulator Comparison -- 3.4 AirSim Simulation Examples -- 3.4.1 Framework Required Programs -- 3.4.2 Simulation Environment -- 3.4.3 AirSim Settings 3.4.4 SimpleFlight Simulation -- 3.4.5 Mission 1: Using SimpleFlight SITL -- 3.4.6 PX4 Simulation -- 3.4.7 Mission 2: Using PX4 SITL -- 3.4.8 Mission 3: Using PX4 HITL -- 3.4.9 Flight Analysis -- References -- 5 Machine Vision Systems of UAS -- 5.1 Introduction -- 5.2 Computer Vision System -- 5.2.1 Pinhole Camera -- 5.2.2 Camera Calibration -- 5.2.3 AirSim Camera Calibration -- 5.3 Image Stabilization -- 5.3.1 Mechanical Stabilization -- 5.3.2 Computational Stabilization -- 5.4 Object Detection -- 5.4.1 Problems of Object Detection -- 5.4.2 Evaluating Object Detection |
ctrlnum | (OCoLC)1399168431 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06480cam a2200553 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1399168431</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">230930s2023 mau o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">BNG</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630819840</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630819842</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1399168431</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">10303007</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TJ213</subfield><subfield code="b">.G37 2023</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23/eng/20231009</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">García, Jesús,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2019162566</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering UAS applications :</subfield><subfield code="b">sensor fusion, machine vision, and mission management. /</subfield><subfield code="c">Jesús Garcia,</subfield></datafield><datafield tag="264" ind1=" " ind2="0"><subfield code="a">Boston :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (317 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Engineering UAS Applications: Sensor Fusion, Machine Vision,and Mission Management -- Contents -- Preface -- 1 Introduction and State of the Art -- 1.1 Introduction and Types of Unmanned Aerial Systems -- 1.2 Main Technologies Used in UAS -- 1.2.1 Navigation -- 1.2.2 Communications -- 1.2.3 Machine Vision -- 1.2.4 Coordination: Swarms of UAVs and Applications -- 1.2.5 Simulation -- 1.3 Summary and Structure of This Book -- References -- 2 Components of UAS -- 2.1 Introduction -- 2.2 Flight Controller -- 2.2.1 Logic Components -- 2.2.2 Physical Components -- 2.3 Communications</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.1 Radio Communication Technologies -- 2.3.2 Communication Protocols -- 2.3.3 UAV Messaging Protocols -- 2.4 Payload -- 2.4.1 Payload Types -- 2.4.2 Payload Positioning -- 2.5 Mission Management Units -- 2.5.1 Ground Station -- 2.5.2 Companion Computer -- 2.5.3 Control APIs -- 2.6 Obstacle Avoidance Use Case -- 2.6.1 Phase 1: Assembly of the Physical Components -- 2.6.2 Phase 2: Setting Up the Software -- 2.6.3 Phase 3: Mission Design from the Ground Station -- 2.6.4 Phase 4: Mission Start -- 2.6.5 Phase 5: Obstacle Detection and Avoidance -- References -- 4 Navigation Systems of UAS</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Introduction -- 4.2 Reference Frame Systems -- 4.2.1 Global Frames (WGS84 and ECEF) and Local Frame at Tangent Point ENU and NED -- 4.2.2 Geodetic to ECEF Transformation -- 4.2.3 ECEF to Geodetic Transformation -- 4.2.4 ECEF to Local Cartesian (ENU and NED) Transformation -- 4.2.5 Local Cartesian (ENU or NED) to the ECEF Transformation -- 4.3 Attitude Mathematical Concepts -- 4.3.1 Attitude Representation -- 4.3.2 Attitude Kinematics -- 4.4 Fusion of the INS and GNSS -- 4.4.1 State Estimation -- 4.4.2 INS State Vector -- 4.4.3 GNSS State Vector -- 4.4.4 Fusion of the INS and GNSS</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 Application: Search for the Best Navigation Parameters -- 4.5.1 Fusion Quality Metrics -- 4.5.2 PX4 Navigation System -- 4.5.3 Search Best EKF Parameters -- References -- 3 Simulation of UAS -- 3.1 Introduction -- 3.2 From Development to Reality -- 3.2.1 Simulation Software -- 3.2.2 SITL -- 3.2.3 HITL -- 3.2.4 External HITL -- 3.2.5 Simulation in Hardware -- 3.2.6 Vehicle in the Loop -- 3.3 UAS Simulators -- 3.3.1 Current Simulators -- 3.3.2 Simulator Comparison -- 3.4 AirSim Simulation Examples -- 3.4.1 Framework Required Programs -- 3.4.2 Simulation Environment -- 3.4.3 AirSim Settings</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.4 SimpleFlight Simulation -- 3.4.5 Mission 1: Using SimpleFlight SITL -- 3.4.6 PX4 Simulation -- 3.4.7 Mission 2: Using PX4 SITL -- 3.4.8 Mission 3: Using PX4 HITL -- 3.4.9 Flight Analysis -- References -- 5 Machine Vision Systems of UAS -- 5.1 Introduction -- 5.2 Computer Vision System -- 5.2.1 Pinhole Camera -- 5.2.2 Camera Calibration -- 5.2.3 AirSim Camera Calibration -- 5.3 Image Stabilization -- 5.3.1 Mechanical Stabilization -- 5.3.2 Computational Stabilization -- 5.4 Object Detection -- 5.4.1 Problems of Object Detection -- 5.4.2 Evaluating Object Detection</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.4.3 Object Detection Example</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Robotics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114628</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vehicles, Remotely piloted.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142539</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Robotique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Véhicules télécommandés.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vehicles, Remotely piloted</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molina, José M.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Llerena, Juan Pedro,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2023129341</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amigo, Daniel,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2023129344</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanchez Pedroche, David,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2023129345</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Garcia, Jesús</subfield><subfield code="t">Engineering UAS Applications: Sensor Fusion, Machine Vision and Mission Management</subfield><subfield code="d">Norwood : Artech House,c2023</subfield><subfield code="z">9781630819835</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3675084</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL30747338</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3675084</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1399168431 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:43Z |
institution | BVB |
isbn | 1630819840 9781630819842 |
language | English |
oclc_num | 1399168431 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (317 p.) |
psigel | ZDB-4-EBA |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | García, Jesús, author. http://id.loc.gov/authorities/names/no2019162566 Engineering UAS applications : sensor fusion, machine vision, and mission management. / Jesús Garcia, Boston : Artech House, 2023. 1 online resource (317 p.) text txt rdacontent computer c rdamedia online resource cr rdacarrier Description based upon print version of record. Intro -- Engineering UAS Applications: Sensor Fusion, Machine Vision,and Mission Management -- Contents -- Preface -- 1 Introduction and State of the Art -- 1.1 Introduction and Types of Unmanned Aerial Systems -- 1.2 Main Technologies Used in UAS -- 1.2.1 Navigation -- 1.2.2 Communications -- 1.2.3 Machine Vision -- 1.2.4 Coordination: Swarms of UAVs and Applications -- 1.2.5 Simulation -- 1.3 Summary and Structure of This Book -- References -- 2 Components of UAS -- 2.1 Introduction -- 2.2 Flight Controller -- 2.2.1 Logic Components -- 2.2.2 Physical Components -- 2.3 Communications 2.3.1 Radio Communication Technologies -- 2.3.2 Communication Protocols -- 2.3.3 UAV Messaging Protocols -- 2.4 Payload -- 2.4.1 Payload Types -- 2.4.2 Payload Positioning -- 2.5 Mission Management Units -- 2.5.1 Ground Station -- 2.5.2 Companion Computer -- 2.5.3 Control APIs -- 2.6 Obstacle Avoidance Use Case -- 2.6.1 Phase 1: Assembly of the Physical Components -- 2.6.2 Phase 2: Setting Up the Software -- 2.6.3 Phase 3: Mission Design from the Ground Station -- 2.6.4 Phase 4: Mission Start -- 2.6.5 Phase 5: Obstacle Detection and Avoidance -- References -- 4 Navigation Systems of UAS 4.1 Introduction -- 4.2 Reference Frame Systems -- 4.2.1 Global Frames (WGS84 and ECEF) and Local Frame at Tangent Point ENU and NED -- 4.2.2 Geodetic to ECEF Transformation -- 4.2.3 ECEF to Geodetic Transformation -- 4.2.4 ECEF to Local Cartesian (ENU and NED) Transformation -- 4.2.5 Local Cartesian (ENU or NED) to the ECEF Transformation -- 4.3 Attitude Mathematical Concepts -- 4.3.1 Attitude Representation -- 4.3.2 Attitude Kinematics -- 4.4 Fusion of the INS and GNSS -- 4.4.1 State Estimation -- 4.4.2 INS State Vector -- 4.4.3 GNSS State Vector -- 4.4.4 Fusion of the INS and GNSS 4.5 Application: Search for the Best Navigation Parameters -- 4.5.1 Fusion Quality Metrics -- 4.5.2 PX4 Navigation System -- 4.5.3 Search Best EKF Parameters -- References -- 3 Simulation of UAS -- 3.1 Introduction -- 3.2 From Development to Reality -- 3.2.1 Simulation Software -- 3.2.2 SITL -- 3.2.3 HITL -- 3.2.4 External HITL -- 3.2.5 Simulation in Hardware -- 3.2.6 Vehicle in the Loop -- 3.3 UAS Simulators -- 3.3.1 Current Simulators -- 3.3.2 Simulator Comparison -- 3.4 AirSim Simulation Examples -- 3.4.1 Framework Required Programs -- 3.4.2 Simulation Environment -- 3.4.3 AirSim Settings 3.4.4 SimpleFlight Simulation -- 3.4.5 Mission 1: Using SimpleFlight SITL -- 3.4.6 PX4 Simulation -- 3.4.7 Mission 2: Using PX4 SITL -- 3.4.8 Mission 3: Using PX4 HITL -- 3.4.9 Flight Analysis -- References -- 5 Machine Vision Systems of UAS -- 5.1 Introduction -- 5.2 Computer Vision System -- 5.2.1 Pinhole Camera -- 5.2.2 Camera Calibration -- 5.2.3 AirSim Camera Calibration -- 5.3 Image Stabilization -- 5.3.1 Mechanical Stabilization -- 5.3.2 Computational Stabilization -- 5.4 Object Detection -- 5.4.1 Problems of Object Detection -- 5.4.2 Evaluating Object Detection 5.4.3 Object Detection Example Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms. Robotics. http://id.loc.gov/authorities/subjects/sh85114628 Vehicles, Remotely piloted. http://id.loc.gov/authorities/subjects/sh85142539 Robotique. Véhicules télécommandés. Robotics fast Vehicles, Remotely piloted fast Molina, José M., author. Llerena, Juan Pedro, author. http://id.loc.gov/authorities/names/no2023129341 Amigo, Daniel, author. http://id.loc.gov/authorities/names/no2023129344 Sanchez Pedroche, David, author. http://id.loc.gov/authorities/names/no2023129345 Print version: Garcia, Jesús Engineering UAS Applications: Sensor Fusion, Machine Vision and Mission Management Norwood : Artech House,c2023 9781630819835 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3675084 Volltext |
spellingShingle | García, Jesús Molina, José M. Llerena, Juan Pedro Amigo, Daniel Sanchez Pedroche, David Engineering UAS applications : sensor fusion, machine vision, and mission management. / Intro -- Engineering UAS Applications: Sensor Fusion, Machine Vision,and Mission Management -- Contents -- Preface -- 1 Introduction and State of the Art -- 1.1 Introduction and Types of Unmanned Aerial Systems -- 1.2 Main Technologies Used in UAS -- 1.2.1 Navigation -- 1.2.2 Communications -- 1.2.3 Machine Vision -- 1.2.4 Coordination: Swarms of UAVs and Applications -- 1.2.5 Simulation -- 1.3 Summary and Structure of This Book -- References -- 2 Components of UAS -- 2.1 Introduction -- 2.2 Flight Controller -- 2.2.1 Logic Components -- 2.2.2 Physical Components -- 2.3 Communications 2.3.1 Radio Communication Technologies -- 2.3.2 Communication Protocols -- 2.3.3 UAV Messaging Protocols -- 2.4 Payload -- 2.4.1 Payload Types -- 2.4.2 Payload Positioning -- 2.5 Mission Management Units -- 2.5.1 Ground Station -- 2.5.2 Companion Computer -- 2.5.3 Control APIs -- 2.6 Obstacle Avoidance Use Case -- 2.6.1 Phase 1: Assembly of the Physical Components -- 2.6.2 Phase 2: Setting Up the Software -- 2.6.3 Phase 3: Mission Design from the Ground Station -- 2.6.4 Phase 4: Mission Start -- 2.6.5 Phase 5: Obstacle Detection and Avoidance -- References -- 4 Navigation Systems of UAS 4.1 Introduction -- 4.2 Reference Frame Systems -- 4.2.1 Global Frames (WGS84 and ECEF) and Local Frame at Tangent Point ENU and NED -- 4.2.2 Geodetic to ECEF Transformation -- 4.2.3 ECEF to Geodetic Transformation -- 4.2.4 ECEF to Local Cartesian (ENU and NED) Transformation -- 4.2.5 Local Cartesian (ENU or NED) to the ECEF Transformation -- 4.3 Attitude Mathematical Concepts -- 4.3.1 Attitude Representation -- 4.3.2 Attitude Kinematics -- 4.4 Fusion of the INS and GNSS -- 4.4.1 State Estimation -- 4.4.2 INS State Vector -- 4.4.3 GNSS State Vector -- 4.4.4 Fusion of the INS and GNSS 4.5 Application: Search for the Best Navigation Parameters -- 4.5.1 Fusion Quality Metrics -- 4.5.2 PX4 Navigation System -- 4.5.3 Search Best EKF Parameters -- References -- 3 Simulation of UAS -- 3.1 Introduction -- 3.2 From Development to Reality -- 3.2.1 Simulation Software -- 3.2.2 SITL -- 3.2.3 HITL -- 3.2.4 External HITL -- 3.2.5 Simulation in Hardware -- 3.2.6 Vehicle in the Loop -- 3.3 UAS Simulators -- 3.3.1 Current Simulators -- 3.3.2 Simulator Comparison -- 3.4 AirSim Simulation Examples -- 3.4.1 Framework Required Programs -- 3.4.2 Simulation Environment -- 3.4.3 AirSim Settings 3.4.4 SimpleFlight Simulation -- 3.4.5 Mission 1: Using SimpleFlight SITL -- 3.4.6 PX4 Simulation -- 3.4.7 Mission 2: Using PX4 SITL -- 3.4.8 Mission 3: Using PX4 HITL -- 3.4.9 Flight Analysis -- References -- 5 Machine Vision Systems of UAS -- 5.1 Introduction -- 5.2 Computer Vision System -- 5.2.1 Pinhole Camera -- 5.2.2 Camera Calibration -- 5.2.3 AirSim Camera Calibration -- 5.3 Image Stabilization -- 5.3.1 Mechanical Stabilization -- 5.3.2 Computational Stabilization -- 5.4 Object Detection -- 5.4.1 Problems of Object Detection -- 5.4.2 Evaluating Object Detection Robotics. http://id.loc.gov/authorities/subjects/sh85114628 Vehicles, Remotely piloted. http://id.loc.gov/authorities/subjects/sh85142539 Robotique. Véhicules télécommandés. Robotics fast Vehicles, Remotely piloted fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114628 http://id.loc.gov/authorities/subjects/sh85142539 |
title | Engineering UAS applications : sensor fusion, machine vision, and mission management. / |
title_auth | Engineering UAS applications : sensor fusion, machine vision, and mission management. / |
title_exact_search | Engineering UAS applications : sensor fusion, machine vision, and mission management. / |
title_full | Engineering UAS applications : sensor fusion, machine vision, and mission management. / Jesús Garcia, |
title_fullStr | Engineering UAS applications : sensor fusion, machine vision, and mission management. / Jesús Garcia, |
title_full_unstemmed | Engineering UAS applications : sensor fusion, machine vision, and mission management. / Jesús Garcia, |
title_short | Engineering UAS applications : |
title_sort | engineering uas applications sensor fusion machine vision and mission management |
title_sub | sensor fusion, machine vision, and mission management. / |
topic | Robotics. http://id.loc.gov/authorities/subjects/sh85114628 Vehicles, Remotely piloted. http://id.loc.gov/authorities/subjects/sh85142539 Robotique. Véhicules télécommandés. Robotics fast Vehicles, Remotely piloted fast |
topic_facet | Robotics. Vehicles, Remotely piloted. Robotique. Véhicules télécommandés. Robotics Vehicles, Remotely piloted |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3675084 |
work_keys_str_mv | AT garciajesus engineeringuasapplicationssensorfusionmachinevisionandmissionmanagement AT molinajosem engineeringuasapplicationssensorfusionmachinevisionandmissionmanagement AT llerenajuanpedro engineeringuasapplicationssensorfusionmachinevisionandmissionmanagement AT amigodaniel engineeringuasapplicationssensorfusionmachinevisionandmissionmanagement AT sanchezpedrochedavid engineeringuasapplicationssensorfusionmachinevisionandmissionmanagement |