Fundamental perceptions in contemporary number theory /:
"The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York] :
[Nova Science Publishers],
[2023]
|
Schriftenreihe: | Computational mathematics and analysis series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning"-- |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9798886978643 |
Internformat
MARC
LEADER | 00000cam a22000008i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1381095855 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 230517s2023 nyu ob 001 0 eng | ||
010 | |a 2023019292 | ||
040 | |a DLC |b eng |e rda |c DLC |d YDX |d N$T |d EBLCP |d UKAHL |d OCLCF |d OCLCO | ||
019 | |a 1378770297 | ||
020 | |a 9798886978643 |q (adobe pdf) | ||
020 | |z 9798886977943 |q (hardcover) | ||
035 | |a (OCoLC)1381095855 |z (OCoLC)1378770297 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QA241 |
082 | 7 | |a 512.7 |2 23/eng20230708 | |
049 | |a MAIN | ||
100 | 1 | |a Kannan, J. |c (Mathematician), |e author. |0 http://id.loc.gov/authorities/names/n2023030328 | |
245 | 1 | 0 | |a Fundamental perceptions in contemporary number theory / |c J. Kannan, Manju Somanath. |
263 | |a 2307 | ||
264 | 1 | |a [New York] : |b [Nova Science Publishers], |c [2023] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Computational Mathematics and Analysis Series | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning"-- |c Provided by publisher. | ||
588 | |a Description based on print version record and CIP data provided by publisher; resource not viewed. | ||
505 | 0 | |a Chapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function | |
505 | 8 | |a 2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots | |
505 | 8 | |a 4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem | |
505 | 8 | |a 7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem. | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a Number theory |2 fast | |
700 | 1 | |a Somanath, Manju, |e author. | |
776 | 0 | 8 | |i Print version: |a Kannan, J. |t Fundamental perceptions in contemporary number theory |d [New York] : [Nova Science Publishers], [2023] |z 9798886977943 |w (DLC) 2023019291 |
830 | 0 | |a Computational mathematics and analysis series. |0 http://id.loc.gov/authorities/names/n97018573 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3619761 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH41500484 | ||
938 | |a EBSCOhost |b EBSC |n 3619761 | ||
938 | |a YBP Library Services |b YANK |n 20211846 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL30552217 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1381095855 |
---|---|
_version_ | 1816882570125639680 |
adam_text | |
any_adam_object | |
author | Kannan, J. (Mathematician) Somanath, Manju |
author_GND | http://id.loc.gov/authorities/names/n2023030328 |
author_facet | Kannan, J. (Mathematician) Somanath, Manju |
author_role | aut aut |
author_sort | Kannan, J. (Mathematician) |
author_variant | j k jk m s ms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Chapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function 2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots 4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem 7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem. |
ctrlnum | (OCoLC)1381095855 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04490cam a22005538i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1381095855</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230517s2023 nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2023019292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1378770297</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798886978643</subfield><subfield code="q">(adobe pdf)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9798886977943</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381095855</subfield><subfield code="z">(OCoLC)1378770297</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23/eng20230708</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kannan, J.</subfield><subfield code="c">(Mathematician),</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2023030328</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamental perceptions in contemporary number theory /</subfield><subfield code="c">J. Kannan, Manju Somanath.</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">2307</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York] :</subfield><subfield code="b">[Nova Science Publishers],</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computational Mathematics and Analysis Series</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record and CIP data provided by publisher; resource not viewed.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Somanath, Manju,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kannan, J.</subfield><subfield code="t">Fundamental perceptions in contemporary number theory</subfield><subfield code="d">[New York] : [Nova Science Publishers], [2023]</subfield><subfield code="z">9798886977943</subfield><subfield code="w">(DLC) 2023019291</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computational mathematics and analysis series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97018573</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3619761</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH41500484</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3619761</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20211846</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL30552217</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1381095855 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:42Z |
institution | BVB |
isbn | 9798886978643 |
language | English |
lccn | 2023019292 |
oclc_num | 1381095855 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | [Nova Science Publishers], |
record_format | marc |
series | Computational mathematics and analysis series. |
series2 | Computational Mathematics and Analysis Series |
spelling | Kannan, J. (Mathematician), author. http://id.loc.gov/authorities/names/n2023030328 Fundamental perceptions in contemporary number theory / J. Kannan, Manju Somanath. 2307 [New York] : [Nova Science Publishers], [2023] 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Computational Mathematics and Analysis Series Includes bibliographical references and index. "The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning"-- Provided by publisher. Description based on print version record and CIP data provided by publisher; resource not viewed. Chapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function 2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots 4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem 7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Number theory fast Somanath, Manju, author. Print version: Kannan, J. Fundamental perceptions in contemporary number theory [New York] : [Nova Science Publishers], [2023] 9798886977943 (DLC) 2023019291 Computational mathematics and analysis series. http://id.loc.gov/authorities/names/n97018573 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3619761 Volltext |
spellingShingle | Kannan, J. (Mathematician) Somanath, Manju Fundamental perceptions in contemporary number theory / Computational mathematics and analysis series. Chapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function 2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots 4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem 7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Number theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093222 |
title | Fundamental perceptions in contemporary number theory / |
title_auth | Fundamental perceptions in contemporary number theory / |
title_exact_search | Fundamental perceptions in contemporary number theory / |
title_full | Fundamental perceptions in contemporary number theory / J. Kannan, Manju Somanath. |
title_fullStr | Fundamental perceptions in contemporary number theory / J. Kannan, Manju Somanath. |
title_full_unstemmed | Fundamental perceptions in contemporary number theory / J. Kannan, Manju Somanath. |
title_short | Fundamental perceptions in contemporary number theory / |
title_sort | fundamental perceptions in contemporary number theory |
topic | Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Number theory fast |
topic_facet | Number theory. Théorie des nombres. Number theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3619761 |
work_keys_str_mv | AT kannanj fundamentalperceptionsincontemporarynumbertheory AT somanathmanju fundamentalperceptionsincontemporarynumbertheory |