Navigating big data analytics :: strategies for the quality systems analyst /
More organizations and their leaders are looking to big data to transform processes and elevate the quality of products and services. Yet, gathering and storing large amounts of data isn't the quick fix often sought after. Without analysts-the human component-to interpret that data, the cost of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milwaukee, WI :
ASQ Quality Press,
[2021]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | More organizations and their leaders are looking to big data to transform processes and elevate the quality of products and services. Yet, gathering and storing large amounts of data isn't the quick fix often sought after. Without analysts-the human component-to interpret that data, the cost of incorrect or misinterpreted data can greatly impact organizations. In this book, author examines the claims of big data analysis in detail. Using examples to illustrate potential problems that may lead to inefficient and inaccurate results, Mawby helps practitioners avoid potential pitfalls and offers application methods to incorporate big data analytics into your company that will enhance your analytic efforts. |
Beschreibung: | 1 online resource (vii, 123 pages) : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781951058166 195105816X |
Internformat
MARC
LEADER | 00000cam a22000007i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1373876174 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 230323s2021 wiua ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d VLB |d SFB |d OCLCF |d YDX |d UKAHL |d OCLCO |d HOPLA | ||
019 | |a 1351433684 | ||
020 | |a 9781951058166 |q (electronic bk.) | ||
020 | |a 195105816X |q (electronic bk.) | ||
020 | |z 9781951058159 | ||
020 | |z 1951058151 | ||
035 | |a (OCoLC)1373876174 |z (OCoLC)1351433684 | ||
050 | 4 | |a QA76.9.B45 |b M38 2021eb | |
082 | 7 | |a 005.7 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Mawby, William D., |e author. | |
245 | 1 | 0 | |a Navigating big data analytics : |b strategies for the quality systems analyst / |c William D. Mawby. |
264 | 1 | |a Milwaukee, WI : |b ASQ Quality Press, |c [2021] | |
300 | |a 1 online resource (vii, 123 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a An introduction to big data analytics -- Potential data problems and how they arise -- Designed experiments versus big data analysis -- The challenge of missing values -- The impact of poor randomization -- Expert opinion -- Censored data -- Other potential problems. | |
520 | |a More organizations and their leaders are looking to big data to transform processes and elevate the quality of products and services. Yet, gathering and storing large amounts of data isn't the quick fix often sought after. Without analysts-the human component-to interpret that data, the cost of incorrect or misinterpreted data can greatly impact organizations. In this book, author examines the claims of big data analysis in detail. Using examples to illustrate potential problems that may lead to inefficient and inaccurate results, Mawby helps practitioners avoid potential pitfalls and offers application methods to incorporate big data analytics into your company that will enhance your analytic efforts. | ||
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 0 | |a Quality control. |0 http://id.loc.gov/authorities/subjects/sh85109440 | |
650 | 6 | |a Données volumineuses. | |
650 | 6 | |a Qualité |x Contrôle. | |
650 | 7 | |a quality control. |2 aat | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Quality control |2 fast | |
776 | 0 | 8 | |i Print version: |a Mawby, William D. |t Navigating big data analytics. |d Milwaukee, WI : ASQ Quality Press, [2021] |z 9781951058159 |w (DLC) 2021939486 |w (OCoLC)1345219305 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3508458 |3 Volltext |
938 | |a hoopla Digital |b HOPL |n MWT15489340 | ||
938 | |a EBSCOhost |b EBSC |n 3508458 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH41065402 | ||
938 | |a YBP Library Services |b YANK |n 303960347 | ||
938 | |a YBP Library Services |b YANK |n 18771611 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1373876174 |
---|---|
_version_ | 1816882569115860992 |
adam_text | |
any_adam_object | |
author | Mawby, William D. |
author_facet | Mawby, William D. |
author_role | aut |
author_sort | Mawby, William D. |
author_variant | w d m wd wdm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.B45 M38 2021eb |
callnumber-search | QA76.9.B45 M38 2021eb |
callnumber-sort | QA 276.9 B45 M38 42021EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | An introduction to big data analytics -- Potential data problems and how they arise -- Designed experiments versus big data analysis -- The challenge of missing values -- The impact of poor randomization -- Expert opinion -- Censored data -- Other potential problems. |
ctrlnum | (OCoLC)1373876174 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03048cam a22005297i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1373876174</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">230323s2021 wiua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">VLB</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">HOPLA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1351433684</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781951058166</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">195105816X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781951058159</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1951058151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1373876174</subfield><subfield code="z">(OCoLC)1351433684</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.B45</subfield><subfield code="b">M38 2021eb</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mawby, William D.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Navigating big data analytics :</subfield><subfield code="b">strategies for the quality systems analyst /</subfield><subfield code="c">William D. Mawby.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milwaukee, WI :</subfield><subfield code="b">ASQ Quality Press,</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 123 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">An introduction to big data analytics -- Potential data problems and how they arise -- Designed experiments versus big data analysis -- The challenge of missing values -- The impact of poor randomization -- Expert opinion -- Censored data -- Other potential problems.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">More organizations and their leaders are looking to big data to transform processes and elevate the quality of products and services. Yet, gathering and storing large amounts of data isn't the quick fix often sought after. Without analysts-the human component-to interpret that data, the cost of incorrect or misinterpreted data can greatly impact organizations. In this book, author examines the claims of big data analysis in detail. Using examples to illustrate potential problems that may lead to inefficient and inaccurate results, Mawby helps practitioners avoid potential pitfalls and offers application methods to incorporate big data analytics into your company that will enhance your analytic efforts.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quality control.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109440</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Qualité</subfield><subfield code="x">Contrôle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">quality control.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quality control</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mawby, William D.</subfield><subfield code="t">Navigating big data analytics.</subfield><subfield code="d">Milwaukee, WI : ASQ Quality Press, [2021]</subfield><subfield code="z">9781951058159</subfield><subfield code="w">(DLC) 2021939486</subfield><subfield code="w">(OCoLC)1345219305</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3508458</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT15489340</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3508458</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH41065402</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">303960347</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">18771611</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1373876174 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:30:42Z |
institution | BVB |
isbn | 9781951058166 195105816X |
language | English |
oclc_num | 1373876174 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 123 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | ASQ Quality Press, |
record_format | marc |
spelling | Mawby, William D., author. Navigating big data analytics : strategies for the quality systems analyst / William D. Mawby. Milwaukee, WI : ASQ Quality Press, [2021] 1 online resource (vii, 123 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. An introduction to big data analytics -- Potential data problems and how they arise -- Designed experiments versus big data analysis -- The challenge of missing values -- The impact of poor randomization -- Expert opinion -- Censored data -- Other potential problems. More organizations and their leaders are looking to big data to transform processes and elevate the quality of products and services. Yet, gathering and storing large amounts of data isn't the quick fix often sought after. Without analysts-the human component-to interpret that data, the cost of incorrect or misinterpreted data can greatly impact organizations. In this book, author examines the claims of big data analysis in detail. Using examples to illustrate potential problems that may lead to inefficient and inaccurate results, Mawby helps practitioners avoid potential pitfalls and offers application methods to incorporate big data analytics into your company that will enhance your analytic efforts. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Quality control. http://id.loc.gov/authorities/subjects/sh85109440 Données volumineuses. Qualité Contrôle. quality control. aat Big data fast Quality control fast Print version: Mawby, William D. Navigating big data analytics. Milwaukee, WI : ASQ Quality Press, [2021] 9781951058159 (DLC) 2021939486 (OCoLC)1345219305 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3508458 Volltext |
spellingShingle | Mawby, William D. Navigating big data analytics : strategies for the quality systems analyst / An introduction to big data analytics -- Potential data problems and how they arise -- Designed experiments versus big data analysis -- The challenge of missing values -- The impact of poor randomization -- Expert opinion -- Censored data -- Other potential problems. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Quality control. http://id.loc.gov/authorities/subjects/sh85109440 Données volumineuses. Qualité Contrôle. quality control. aat Big data fast Quality control fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/subjects/sh85109440 |
title | Navigating big data analytics : strategies for the quality systems analyst / |
title_auth | Navigating big data analytics : strategies for the quality systems analyst / |
title_exact_search | Navigating big data analytics : strategies for the quality systems analyst / |
title_full | Navigating big data analytics : strategies for the quality systems analyst / William D. Mawby. |
title_fullStr | Navigating big data analytics : strategies for the quality systems analyst / William D. Mawby. |
title_full_unstemmed | Navigating big data analytics : strategies for the quality systems analyst / William D. Mawby. |
title_short | Navigating big data analytics : |
title_sort | navigating big data analytics strategies for the quality systems analyst |
title_sub | strategies for the quality systems analyst / |
topic | Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Quality control. http://id.loc.gov/authorities/subjects/sh85109440 Données volumineuses. Qualité Contrôle. quality control. aat Big data fast Quality control fast |
topic_facet | Big data. Quality control. Données volumineuses. Qualité Contrôle. quality control. Big data Quality control |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3508458 |
work_keys_str_mv | AT mawbywilliamd navigatingbigdataanalyticsstrategiesforthequalitysystemsanalyst |