Lumped Elements for RF and Microwave Circuits /:
Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elem...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified] :
Artech House Publishers,
2023.
|
Ausgabe: | Second Edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You'll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You'll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines. |
Beschreibung: | 1 online resource |
ISBN: | 1630819336 9781630819330 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1372578281 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | | ||
007 | cr ||||||||||| | ||
008 | 230127s2023 enk go 000 0 eng d | ||
040 | |a UKAHL |b eng |e rda |c UKAHL |d N$T |d OCLCF |d OCLCO |d SFB |d OCLCL |d OCLCQ | ||
020 | |a 1630819336 | ||
020 | |a 9781630819330 |q (electronic bk.) | ||
035 | |a (OCoLC)1372578281 | ||
050 | 4 | |a TK7874.54 | |
082 | 7 | |a 621.381/32 |2 23/eng/20230321 | |
049 | |a MAIN | ||
100 | 1 | |a Bahl, Inder, |e author. | |
245 | 1 | 0 | |a Lumped Elements for RF and Microwave Circuits / |c Inder Bahl. |
250 | |a Second Edition. | ||
264 | 1 | |a [Place of publication not identified] : |b Artech House Publishers, |c 2023. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors. | |
505 | 8 | |a 3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model. | |
505 | 8 | |a 6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen. | |
520 | 8 | |a Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You'll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You'll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines. | |
650 | 0 | |a Lumped elements (Electronics) |0 http://id.loc.gov/authorities/subjects/sh2003001284 | |
650 | 0 | |a Microwave integrated circuits. |0 http://id.loc.gov/authorities/subjects/sh85084963 | |
650 | 0 | |a Radio frequency integrated circuits. |0 http://id.loc.gov/authorities/subjects/sh2003001294 | |
650 | 0 | |a Passive components. |0 http://id.loc.gov/authorities/subjects/sh2002009415 | |
650 | 6 | |a Constantes localisées (Électronique) | |
650 | 6 | |a Circuits intégrés pour micro-ondes. | |
650 | 6 | |a Circuits intégrés à radiofréquence. | |
650 | 6 | |a Composants passifs. | |
650 | 7 | |a Lumped elements (Electronics) |2 fast | |
650 | 7 | |a Microwave integrated circuits |2 fast | |
650 | 7 | |a Passive components |2 fast | |
650 | 7 | |a Radio frequency integrated circuits |2 fast | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3534285 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH41223837 | ||
938 | |a EBSCOhost |b EBSC |n 3534285 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1372578281 |
---|---|
_version_ | 1816882568943894528 |
adam_text | |
any_adam_object | |
author | Bahl, Inder |
author_facet | Bahl, Inder |
author_role | aut |
author_sort | Bahl, Inder |
author_variant | i b ib |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874.54 |
callnumber-search | TK7874.54 |
callnumber-sort | TK 47874.54 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors. 3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model. 6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen. |
ctrlnum | (OCoLC)1372578281 |
dewey-full | 621.381/32 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381/32 |
dewey-search | 621.381/32 |
dewey-sort | 3621.381 232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | Second Edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08938cam a2200517Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1372578281</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230127s2023 enk go 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKAHL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">UKAHL</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630819336</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630819330</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1372578281</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7874.54</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.381/32</subfield><subfield code="2">23/eng/20230321</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bahl, Inder,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lumped Elements for RF and Microwave Circuits /</subfield><subfield code="c">Inder Bahl.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified] :</subfield><subfield code="b">Artech House Publishers,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You'll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You'll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lumped elements (Electronics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2003001284</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microwave integrated circuits.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084963</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Radio frequency integrated circuits.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2003001294</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Passive components.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002009415</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Constantes localisées (Électronique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Circuits intégrés pour micro-ondes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Circuits intégrés à radiofréquence.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Composants passifs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lumped elements (Electronics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microwave integrated circuits</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Passive components</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radio frequency integrated circuits</subfield><subfield code="2">fast</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3534285</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH41223837</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3534285</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1372578281 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:41Z |
institution | BVB |
isbn | 1630819336 9781630819330 |
language | English |
oclc_num | 1372578281 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Artech House Publishers, |
record_format | marc |
spelling | Bahl, Inder, author. Lumped Elements for RF and Microwave Circuits / Inder Bahl. Second Edition. [Place of publication not identified] : Artech House Publishers, 2023. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors. 3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model. 6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen. Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You'll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You'll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines. Lumped elements (Electronics) http://id.loc.gov/authorities/subjects/sh2003001284 Microwave integrated circuits. http://id.loc.gov/authorities/subjects/sh85084963 Radio frequency integrated circuits. http://id.loc.gov/authorities/subjects/sh2003001294 Passive components. http://id.loc.gov/authorities/subjects/sh2002009415 Constantes localisées (Électronique) Circuits intégrés pour micro-ondes. Circuits intégrés à radiofréquence. Composants passifs. Lumped elements (Electronics) fast Microwave integrated circuits fast Passive components fast Radio frequency integrated circuits fast FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3534285 Volltext |
spellingShingle | Bahl, Inder Lumped Elements for RF and Microwave Circuits / Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors. 3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model. 6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen. Lumped elements (Electronics) http://id.loc.gov/authorities/subjects/sh2003001284 Microwave integrated circuits. http://id.loc.gov/authorities/subjects/sh85084963 Radio frequency integrated circuits. http://id.loc.gov/authorities/subjects/sh2003001294 Passive components. http://id.loc.gov/authorities/subjects/sh2002009415 Constantes localisées (Électronique) Circuits intégrés pour micro-ondes. Circuits intégrés à radiofréquence. Composants passifs. Lumped elements (Electronics) fast Microwave integrated circuits fast Passive components fast Radio frequency integrated circuits fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2003001284 http://id.loc.gov/authorities/subjects/sh85084963 http://id.loc.gov/authorities/subjects/sh2003001294 http://id.loc.gov/authorities/subjects/sh2002009415 |
title | Lumped Elements for RF and Microwave Circuits / |
title_auth | Lumped Elements for RF and Microwave Circuits / |
title_exact_search | Lumped Elements for RF and Microwave Circuits / |
title_full | Lumped Elements for RF and Microwave Circuits / Inder Bahl. |
title_fullStr | Lumped Elements for RF and Microwave Circuits / Inder Bahl. |
title_full_unstemmed | Lumped Elements for RF and Microwave Circuits / Inder Bahl. |
title_short | Lumped Elements for RF and Microwave Circuits / |
title_sort | lumped elements for rf and microwave circuits |
topic | Lumped elements (Electronics) http://id.loc.gov/authorities/subjects/sh2003001284 Microwave integrated circuits. http://id.loc.gov/authorities/subjects/sh85084963 Radio frequency integrated circuits. http://id.loc.gov/authorities/subjects/sh2003001294 Passive components. http://id.loc.gov/authorities/subjects/sh2002009415 Constantes localisées (Électronique) Circuits intégrés pour micro-ondes. Circuits intégrés à radiofréquence. Composants passifs. Lumped elements (Electronics) fast Microwave integrated circuits fast Passive components fast Radio frequency integrated circuits fast |
topic_facet | Lumped elements (Electronics) Microwave integrated circuits. Radio frequency integrated circuits. Passive components. Constantes localisées (Électronique) Circuits intégrés pour micro-ondes. Circuits intégrés à radiofréquence. Composants passifs. Microwave integrated circuits Passive components Radio frequency integrated circuits |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3534285 |
work_keys_str_mv | AT bahlinder lumpedelementsforrfandmicrowavecircuits |