Advances in portable x-ray fluorescence spectrometry :: instrumentation, application and interpretation /
Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this vo...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Royal Society of Chemistry,
[2023]
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal. |
Beschreibung: | 1 online resource |
ISBN: | 9781839162701 1839162708 9781839162695 1839162694 |
Internformat
MARC
LEADER | 00000cam a22000007i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1348924185 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 221028s2023 enk o 000 0 eng d | ||
040 | |a YDX |b eng |e rda |c YDX |d YDXIT |d N$T |d UIU |d UKRSC |d OCLCO |d YDX |d QGK | ||
020 | |a 9781839162701 |q (electronic bk.) | ||
020 | |a 1839162708 |q (electronic bk.) | ||
020 | |a 9781839162695 | ||
020 | |a 1839162694 | ||
020 | |z 1788014227 | ||
020 | |z 9781788014229 | ||
035 | |a (OCoLC)1348924185 | ||
037 | |a 6115:5957 |b Royal Society of Chemistry |n http://www.rsc.org/spr | ||
050 | 4 | |a QD96.X2 |b A48 2023 | |
072 | 7 | |a SCI |x 013010 |2 bisacsh | |
072 | 7 | |a SCI |x 013050 |2 bisacsh | |
072 | 7 | |a SCI |x 013080 |2 bisacsh | |
072 | 7 | |a SCI |x 078000 |2 bisacsh | |
072 | 7 | |a PNFS |2 bicssc | |
072 | 7 | |a PDN |2 bicssc | |
072 | 7 | |a PNR |2 bicssc | |
072 | 7 | |a TQ |2 bicssc | |
082 | 7 | |a 543.62 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in portable x-ray fluorescence spectrometry : |b instrumentation, application and interpretation / |c edited by B. Lee Drake, Brandi L. MacDonald. |
264 | 1 | |a Cambridge : |b Royal Society of Chemistry, |c [2023] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from digital title page (viewed on October 31, 2022). | |
520 | |a Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal. | ||
505 | 0 | |a Intro -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Categorization -- 1.3 A Brief History of Portable XRF -- 1.4 The Adoption of pXRF and Topics in This Volume -- References -- Chapter 2 Principles of X-ray Fluorescence -- 2.1 What Is Fluorescence? -- 2.2 How Does X-ray Fluorescence Work? -- 2.3 The XRF Spectrum -- 2.4 Spectra and True Atomic Abundance -- 2.5 First Bias: How Deep Can You Measure? -- 2.6 Second Bias: All Elements Don't Fluoresce Equally Well -- 2.7 Third Bias: Attenuation on the Way to the Detector -- 2.8 Fourth Bias: Attenuation From the Tube -- 2.9 Fifth Bias: Excitation on the Absorption Edge -- 2.10 Sixth Bias: Overlaps -- 2.11 Geometry -- 2.12 How Do You Control Light? -- 2.13 Voltage -- 2.14 Current -- 2.15 Filters -- 2.16 Time -- 2.17 Atmosphere -- 2.18 Filter Selection -- 2.19 Energy/Voltage -- 2.20 Atmospheric Control -- 2.21 Other Spectral Modifications -- 2.22 Collimator -- 2.23 Lenses -- 2.24 Masks -- 2.25 Diffraction Crystal -- 2.26 Summary -- References -- Chapter 3 Qualitative Analysis Using pXRF -- 3.1 Introduction to Qualitative Analysis -- 3.2 Qualitative Analysis of Paintings -- 3.3 Normalization -- 3.4 Log Scales -- 3.5 Qualitative Investigations -- Artwork Attributions -- Acknowledgements -- References -- Chapter 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Quantification -- 4.3 Empirical Quantification -- 4.4 Fundamental Parameters Quantification -- 4.5 Quantification Summary -- 4.6 Normalization -- 4.7 Hypothesis Testing -- 4.8 Quantitative Analysis Conclusion -- References -- Chapter 5 Features of Portable XRF Devices and Their Safe Handling -- 5.1 Features of Portable XRF Devices -- 5.2 Characteristic Devices -- 5.3 Analysis of Thin Samples -- 5.4 Analysis of Thick Samples -- 5.5 Analysis of the Human Body or Human-derived Samples. | |
505 | 8 | |a 5.6 Analysis of Archaeological Materials and Cultural Properties -- 5.7 Analysis of Drainage Water -- 5.8 Validity for Using Portable Devices -- References -- Chapter 6 Industrial Applications of pXRF -- 6.1 Introduction -- 6.2 Metal Application Segment -- 6.2.1 Calibration Approaches -- 6.2.2 Intensity -- 6.2.3 Matrix Correction -- 6.2.4 Grade Identification Process -- 6.2.5 Analyzing Samples -- 6.2.6 Tramp Element Functionality -- 6.2.7 Nominal Chemistry Function -- 6.2.8 Accuracy Improvement for Grade ID and Chemistry -- 6.2.9 PMI Applications -- 6.2.10 Precious Metal Applications -- 6.2.11 Coating Thickness Analysis -- 6.3 Consumer Product Testing with PXRF -- 6.4 Soil Screening -- 6.5 Geochem and Mining Applications -- 6.5.1 Calibration and Calibration Approaches -- 6.5.2 Analytical Challenges -- 6.5.3 Detection Limit -- 6.5.4 Exploration -- 6.5.5 Metallurgy and Mining Operations -- 6.6 Analysis in Organic Matrix -- 6.6.1 Petrochemical Applications -- 6.6.2 Analysis of Inorganic Elements (Nutrients) in Plant Materials or Animal Waste Products -- 6.6.3 Tagging/Authentication Analysis -- 6.6.4 Exotic Industrial Applications -- Acknowledgements -- References -- Chapter 7 Regulatory Applications of XRF for Elemental Analysis -- Rapid Screening and Accurate Quantitative Analysis of Toxic and Nutrient Elements in Consumer Products -- 7.1 Introduction and Overview -- 7.2 Handheld/Portable XRF Systems -- 7.3 Safety Considerations -- 7.4 Screening Applications of XRF -- 7.4.1 Sample Handling -- 7.4.2 XRF Spectral Interpretation -- 7.4.3 Avoiding False Positives -- 7.4.4 Avoiding False Negatives -- 7.4.5 Recommendations and Best Practices for Field Screening -- 7.5 Accurate Quantitative Analysis Using Handheld/Portable XRF -- 7.5.1 XRF versus ICP-MS Methods -- 7.5.2 Preparing Representative Samples -- 7.5.3 Preparing Suitable Standards. | |
505 | 8 | |a 7.5.4 Developing a Quantitative XRF Method -- 7.6 Conclusions, Recommendations, and Future Prospects -- 7.6.1 Use of XRF for Screening -- 7.6.2 Use of XRF for Quantitative Analysis -- 7.6.3 Future Prospects -- Acknowledgements -- References -- Chapter 8 Chemical Analysis of Natural Waters Using Portable X-Ray Fluorescence Spectrometry -- 8.1 Why Do We Analyze the Chemistry of Water? -- 8.2 Applications of pXRF in Water -- 8.3 Preparing for the Analysis of Water -- 8.4 Instrumentation Setup for Analysis of Waters -- 8.5 Calibration and Quantification -- 8.6 Case Example: Characterizing Brine Density with pXRF -- 8.7 Approach to Quantifying Brine Density -- 8.8 Conclusions -- Acknowledgements -- References -- Chapter 9 X-ray Fluorescence Applications in Agriculture -- 9.1 Introduction -- 9.2 The Physics of XRF -- 9.3 Challenges in Four Categories of Analysis: Plant, Soil, Manure, and Fertilizer -- 9.3.1 Soils -- 9.3.2 Plants -- 9.3.3 Fertilizers -- 9.3.4 Manure -- 9.4 Calibration Approaches -- 9.5 Combined pXRF, Chemometrics and FTIR Calibrations -- 9.5.1 XRF Applications Coupled with SR-IMS Molecular Spectroscopy -- 9.6 Report Generation -- How to Transform Data into Actionable Information for Clients -- 9.7 Low Concentrations -- 9.8 Conclusions and Future Research -- Abbreviations -- Acknowledgements -- References -- Chapter 10 Subsurface Characterization for Energy Applications -- 10.1 Introduction -- 10.2 XRF Elemental Analysis -- 10.2.1 Types of X-ray Fluorescence Analysis -- 10.2.2 Excitation Parameters -- 10.2.3 Measurement Time or Step Size -- 10.2.4 Analysis Depth -- 10.3 Workflow: Data Collection on Core and Cuttings -- 10.3.1 Safety -- 10.3.2 Excitation Parameters -- 10.3.3 Choosing Spot, Line, or Map Measurements -- 10.3.4 Spot Measurements on Core -- 10.3.5 Continuous Line Measurements on the Core. | |
505 | 8 | |a 10.3.6 Spatial Geochemistry Mapping on Core and Cuttings -- 10.3.7 Bulk Geochemistry on Cuttings -- 10.3.8 Collecting Allied Data to Augment XRF Analyses -- 10.3.9 Quality Control -- 10.4 Workflow: Data Reduction and Quantification -- 10.4.1 Uncertainty in XRF Analysis -- 10.4.2 ED-XRF Spectra Artifacts -- 10.4.3 Data Pre-processing -- 10.4.4 Quantification -- 10.4.5 Calibrating Line Scanning Instruments -- 10.4.6 Calibration of Micro-XRF Maps -- 10.4.7 Lower Limits of Quantification and Detection -- 10.4.8 Normalization of Quantified Data -- 10.4.9 The Future of Calibrations -- 10.5 Chemofacies -- 10.5.1 Geochemical Signatures and Chemofacies -- 10.5.2 Defining Chemofacies -- 10.5.3 Chemostratigraphy as a Correlative Tool -- 10.5.4 Chemofacies Applied to Drill Cuttings -- 10.6 Elemental Proxies -- 10.6.1 Major Elements -- 10.6.2 Trace Elements -- 10.7 Conclusions -- References -- Chapter 11 In Situ X-ray Spectrometers in Space Exploration -- 11.1 Introduction -- 11.2 History of Landed X-ray Spectrometers -- 11.3 Challenges of In Situ Planetary X-ray Spectroscopy -- 11.3.1 Latency -- 11.3.2 Data -- 11.3.3 Power -- 11.3.4 Varying Thermal Environment -- 11.3.5 Limited Sample Preparation -- 11.3.6 Dust Cover -- 11.3.7 Atmosphere Effects -- 11.3.8 Targeting Uncertainty -- 11.3.9 Remote Troubleshooting -- 11.3.10 Radiation -- 11.3.11 Exploring the Unknown -- 11.4 Key Discoveries and Science Enabled by Planetary X-ray Spectrometers -- 11.4.1 Introduction -- 11.4.2 Ground-truthing Remote Sensing Observations -- 11.4.3 Integrated Science with Multiple Rover Instruments -- 11.4.4 In Situ XRF Results from Multiple Mars Locales -- 11.4.5 Martian Meteorites -- 11.5 Planetary X-ray Diffraction -- 11.5.1 Introduction -- 11.5.2 Challenges of Planetary XRD -- 11.5.3 Science Enabled by the First Martian XRD -- 11.6 Summary -- Acknowledgements -- References. | |
505 | 8 | |a Chapter 12 Evolution of Portable Devices: Using EDXRF to Study Works of Art -- 12.1 Introduction -- 12.2 Evolution of EDXRF Devices and Applications -- 12.3 Conclusions -- 12.4 A Look to the Future -- References -- Chapter 13 Quantitative Analysis of Archaeological and Historical Brasses Using Handheld X-ray Fluorescence Spectrometry -- 13.1 Introduction -- 13.2 Brass: Composition and Material Properties -- 13.3 Ancient and Historical Brasses: A Brief History -- 13.4 Benefits and Advantages to the hhXRF Analysis of Archaeological and Historical Metals -- 13.5 Quantitative hhXRF Analyses of Archaeological and Historical Brasses: Limitations, Challenges, and Contemporary Practices -- 13.5.1 Sample Limitations -- 13.5.2 Spectral Interference and Matrix Effects -- 13.5.3 Quantification Methods and Reference Standards -- 13.6 Case Study: Quantitative hhXRF Analyses of Brass Tinkling Cones from Fort Albany, Northern Ontario, Canada -- 13.6.1 Acquisition of CRMs -- 13.6.2 Instrumentation, Analysis Conditions, and Evaluation of CRMs -- 13.6.3 Construction of Empirical Calibrations -- 13.6.4 Evaluating the Analytical Quality of the Calibrations -- 13.6.5 Quantitative Analyses of the Brass Tinkling Cones from Fort Albany -- 13.7 Conclusions -- Acknowledgements -- References -- Chapter 14 pXRF Analysis of Heritage Glass -- 14.1 Introduction -- 14.2 Analysis of Heritage Glasses: Research Questions, Sample Conditions, and Instrument Parameters -- 14.2.1 Elemental Characterization of Heritage Glasses -- 14.2.2 Sample Condition, Preparation, and Analytical Protocols -- 14.3 Quantification and Calibration -- 14.3.1 Mathematical Methods -- 14.3.2 Empirical Calibrations -- 14.3.3 Semi-quantitative Methods -- 14.4 Discussion and Conclusions -- References. | |
650 | 0 | |a X-ray spectroscopy. |0 http://id.loc.gov/authorities/subjects/sh85148744 | |
650 | 0 | |a Fluorescence spectroscopy. |0 http://id.loc.gov/authorities/subjects/sh85049411 | |
650 | 6 | |a Spectroscopie des rayons X. | |
650 | 6 | |a Spectroscopie de fluorescence. | |
650 | 7 | |a x-ray spectroscopy. |2 aat | |
650 | 7 | |a Fluorescence spectroscopy |2 fast | |
650 | 7 | |a X-ray spectroscopy |2 fast | |
700 | 1 | |a Drake, B. Lee, |e editor. | |
700 | 1 | |a MacDonald, Brandi L., |e editor. | |
776 | 0 | 8 | |i Print version: |z 1788014227 |z 9781788014229 |w (OCoLC)1250511895 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3424170 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3424170 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 21017351 | ||
938 | |a YBP Library Services |b YANK |n 303217752 | ||
938 | |a EBSCOhost |b EBSC |n 3424170 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1348924185 |
---|---|
_version_ | 1829095376082173952 |
adam_text | |
any_adam_object | |
author2 | Drake, B. Lee MacDonald, Brandi L. |
author2_role | edt edt |
author2_variant | b l d bl bld b l m bl blm |
author_facet | Drake, B. Lee MacDonald, Brandi L. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD96 |
callnumber-raw | QD96.X2 A48 2023 |
callnumber-search | QD96.X2 A48 2023 |
callnumber-sort | QD 296 X2 A48 42023 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Intro -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Categorization -- 1.3 A Brief History of Portable XRF -- 1.4 The Adoption of pXRF and Topics in This Volume -- References -- Chapter 2 Principles of X-ray Fluorescence -- 2.1 What Is Fluorescence? -- 2.2 How Does X-ray Fluorescence Work? -- 2.3 The XRF Spectrum -- 2.4 Spectra and True Atomic Abundance -- 2.5 First Bias: How Deep Can You Measure? -- 2.6 Second Bias: All Elements Don't Fluoresce Equally Well -- 2.7 Third Bias: Attenuation on the Way to the Detector -- 2.8 Fourth Bias: Attenuation From the Tube -- 2.9 Fifth Bias: Excitation on the Absorption Edge -- 2.10 Sixth Bias: Overlaps -- 2.11 Geometry -- 2.12 How Do You Control Light? -- 2.13 Voltage -- 2.14 Current -- 2.15 Filters -- 2.16 Time -- 2.17 Atmosphere -- 2.18 Filter Selection -- 2.19 Energy/Voltage -- 2.20 Atmospheric Control -- 2.21 Other Spectral Modifications -- 2.22 Collimator -- 2.23 Lenses -- 2.24 Masks -- 2.25 Diffraction Crystal -- 2.26 Summary -- References -- Chapter 3 Qualitative Analysis Using pXRF -- 3.1 Introduction to Qualitative Analysis -- 3.2 Qualitative Analysis of Paintings -- 3.3 Normalization -- 3.4 Log Scales -- 3.5 Qualitative Investigations -- Artwork Attributions -- Acknowledgements -- References -- Chapter 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Quantification -- 4.3 Empirical Quantification -- 4.4 Fundamental Parameters Quantification -- 4.5 Quantification Summary -- 4.6 Normalization -- 4.7 Hypothesis Testing -- 4.8 Quantitative Analysis Conclusion -- References -- Chapter 5 Features of Portable XRF Devices and Their Safe Handling -- 5.1 Features of Portable XRF Devices -- 5.2 Characteristic Devices -- 5.3 Analysis of Thin Samples -- 5.4 Analysis of Thick Samples -- 5.5 Analysis of the Human Body or Human-derived Samples. 5.6 Analysis of Archaeological Materials and Cultural Properties -- 5.7 Analysis of Drainage Water -- 5.8 Validity for Using Portable Devices -- References -- Chapter 6 Industrial Applications of pXRF -- 6.1 Introduction -- 6.2 Metal Application Segment -- 6.2.1 Calibration Approaches -- 6.2.2 Intensity -- 6.2.3 Matrix Correction -- 6.2.4 Grade Identification Process -- 6.2.5 Analyzing Samples -- 6.2.6 Tramp Element Functionality -- 6.2.7 Nominal Chemistry Function -- 6.2.8 Accuracy Improvement for Grade ID and Chemistry -- 6.2.9 PMI Applications -- 6.2.10 Precious Metal Applications -- 6.2.11 Coating Thickness Analysis -- 6.3 Consumer Product Testing with PXRF -- 6.4 Soil Screening -- 6.5 Geochem and Mining Applications -- 6.5.1 Calibration and Calibration Approaches -- 6.5.2 Analytical Challenges -- 6.5.3 Detection Limit -- 6.5.4 Exploration -- 6.5.5 Metallurgy and Mining Operations -- 6.6 Analysis in Organic Matrix -- 6.6.1 Petrochemical Applications -- 6.6.2 Analysis of Inorganic Elements (Nutrients) in Plant Materials or Animal Waste Products -- 6.6.3 Tagging/Authentication Analysis -- 6.6.4 Exotic Industrial Applications -- Acknowledgements -- References -- Chapter 7 Regulatory Applications of XRF for Elemental Analysis -- Rapid Screening and Accurate Quantitative Analysis of Toxic and Nutrient Elements in Consumer Products -- 7.1 Introduction and Overview -- 7.2 Handheld/Portable XRF Systems -- 7.3 Safety Considerations -- 7.4 Screening Applications of XRF -- 7.4.1 Sample Handling -- 7.4.2 XRF Spectral Interpretation -- 7.4.3 Avoiding False Positives -- 7.4.4 Avoiding False Negatives -- 7.4.5 Recommendations and Best Practices for Field Screening -- 7.5 Accurate Quantitative Analysis Using Handheld/Portable XRF -- 7.5.1 XRF versus ICP-MS Methods -- 7.5.2 Preparing Representative Samples -- 7.5.3 Preparing Suitable Standards. 7.5.4 Developing a Quantitative XRF Method -- 7.6 Conclusions, Recommendations, and Future Prospects -- 7.6.1 Use of XRF for Screening -- 7.6.2 Use of XRF for Quantitative Analysis -- 7.6.3 Future Prospects -- Acknowledgements -- References -- Chapter 8 Chemical Analysis of Natural Waters Using Portable X-Ray Fluorescence Spectrometry -- 8.1 Why Do We Analyze the Chemistry of Water? -- 8.2 Applications of pXRF in Water -- 8.3 Preparing for the Analysis of Water -- 8.4 Instrumentation Setup for Analysis of Waters -- 8.5 Calibration and Quantification -- 8.6 Case Example: Characterizing Brine Density with pXRF -- 8.7 Approach to Quantifying Brine Density -- 8.8 Conclusions -- Acknowledgements -- References -- Chapter 9 X-ray Fluorescence Applications in Agriculture -- 9.1 Introduction -- 9.2 The Physics of XRF -- 9.3 Challenges in Four Categories of Analysis: Plant, Soil, Manure, and Fertilizer -- 9.3.1 Soils -- 9.3.2 Plants -- 9.3.3 Fertilizers -- 9.3.4 Manure -- 9.4 Calibration Approaches -- 9.5 Combined pXRF, Chemometrics and FTIR Calibrations -- 9.5.1 XRF Applications Coupled with SR-IMS Molecular Spectroscopy -- 9.6 Report Generation -- How to Transform Data into Actionable Information for Clients -- 9.7 Low Concentrations -- 9.8 Conclusions and Future Research -- Abbreviations -- Acknowledgements -- References -- Chapter 10 Subsurface Characterization for Energy Applications -- 10.1 Introduction -- 10.2 XRF Elemental Analysis -- 10.2.1 Types of X-ray Fluorescence Analysis -- 10.2.2 Excitation Parameters -- 10.2.3 Measurement Time or Step Size -- 10.2.4 Analysis Depth -- 10.3 Workflow: Data Collection on Core and Cuttings -- 10.3.1 Safety -- 10.3.2 Excitation Parameters -- 10.3.3 Choosing Spot, Line, or Map Measurements -- 10.3.4 Spot Measurements on Core -- 10.3.5 Continuous Line Measurements on the Core. 10.3.6 Spatial Geochemistry Mapping on Core and Cuttings -- 10.3.7 Bulk Geochemistry on Cuttings -- 10.3.8 Collecting Allied Data to Augment XRF Analyses -- 10.3.9 Quality Control -- 10.4 Workflow: Data Reduction and Quantification -- 10.4.1 Uncertainty in XRF Analysis -- 10.4.2 ED-XRF Spectra Artifacts -- 10.4.3 Data Pre-processing -- 10.4.4 Quantification -- 10.4.5 Calibrating Line Scanning Instruments -- 10.4.6 Calibration of Micro-XRF Maps -- 10.4.7 Lower Limits of Quantification and Detection -- 10.4.8 Normalization of Quantified Data -- 10.4.9 The Future of Calibrations -- 10.5 Chemofacies -- 10.5.1 Geochemical Signatures and Chemofacies -- 10.5.2 Defining Chemofacies -- 10.5.3 Chemostratigraphy as a Correlative Tool -- 10.5.4 Chemofacies Applied to Drill Cuttings -- 10.6 Elemental Proxies -- 10.6.1 Major Elements -- 10.6.2 Trace Elements -- 10.7 Conclusions -- References -- Chapter 11 In Situ X-ray Spectrometers in Space Exploration -- 11.1 Introduction -- 11.2 History of Landed X-ray Spectrometers -- 11.3 Challenges of In Situ Planetary X-ray Spectroscopy -- 11.3.1 Latency -- 11.3.2 Data -- 11.3.3 Power -- 11.3.4 Varying Thermal Environment -- 11.3.5 Limited Sample Preparation -- 11.3.6 Dust Cover -- 11.3.7 Atmosphere Effects -- 11.3.8 Targeting Uncertainty -- 11.3.9 Remote Troubleshooting -- 11.3.10 Radiation -- 11.3.11 Exploring the Unknown -- 11.4 Key Discoveries and Science Enabled by Planetary X-ray Spectrometers -- 11.4.1 Introduction -- 11.4.2 Ground-truthing Remote Sensing Observations -- 11.4.3 Integrated Science with Multiple Rover Instruments -- 11.4.4 In Situ XRF Results from Multiple Mars Locales -- 11.4.5 Martian Meteorites -- 11.5 Planetary X-ray Diffraction -- 11.5.1 Introduction -- 11.5.2 Challenges of Planetary XRD -- 11.5.3 Science Enabled by the First Martian XRD -- 11.6 Summary -- Acknowledgements -- References. Chapter 12 Evolution of Portable Devices: Using EDXRF to Study Works of Art -- 12.1 Introduction -- 12.2 Evolution of EDXRF Devices and Applications -- 12.3 Conclusions -- 12.4 A Look to the Future -- References -- Chapter 13 Quantitative Analysis of Archaeological and Historical Brasses Using Handheld X-ray Fluorescence Spectrometry -- 13.1 Introduction -- 13.2 Brass: Composition and Material Properties -- 13.3 Ancient and Historical Brasses: A Brief History -- 13.4 Benefits and Advantages to the hhXRF Analysis of Archaeological and Historical Metals -- 13.5 Quantitative hhXRF Analyses of Archaeological and Historical Brasses: Limitations, Challenges, and Contemporary Practices -- 13.5.1 Sample Limitations -- 13.5.2 Spectral Interference and Matrix Effects -- 13.5.3 Quantification Methods and Reference Standards -- 13.6 Case Study: Quantitative hhXRF Analyses of Brass Tinkling Cones from Fort Albany, Northern Ontario, Canada -- 13.6.1 Acquisition of CRMs -- 13.6.2 Instrumentation, Analysis Conditions, and Evaluation of CRMs -- 13.6.3 Construction of Empirical Calibrations -- 13.6.4 Evaluating the Analytical Quality of the Calibrations -- 13.6.5 Quantitative Analyses of the Brass Tinkling Cones from Fort Albany -- 13.7 Conclusions -- Acknowledgements -- References -- Chapter 14 pXRF Analysis of Heritage Glass -- 14.1 Introduction -- 14.2 Analysis of Heritage Glasses: Research Questions, Sample Conditions, and Instrument Parameters -- 14.2.1 Elemental Characterization of Heritage Glasses -- 14.2.2 Sample Condition, Preparation, and Analytical Protocols -- 14.3 Quantification and Calibration -- 14.3.1 Mathematical Methods -- 14.3.2 Empirical Calibrations -- 14.3.3 Semi-quantitative Methods -- 14.4 Discussion and Conclusions -- References. |
ctrlnum | (OCoLC)1348924185 |
dewey-full | 543.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543.62 |
dewey-search | 543.62 |
dewey-sort | 3543.62 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>13177cam a22006737i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1348924185</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">221028s2023 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">YDX</subfield><subfield code="d">YDXIT</subfield><subfield code="d">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">UKRSC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">QGK</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839162701</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1839162708</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839162695</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1839162694</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1788014227</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781788014229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1348924185</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">6115:5957</subfield><subfield code="b">Royal Society of Chemistry</subfield><subfield code="n">http://www.rsc.org/spr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD96.X2</subfield><subfield code="b">A48 2023</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013080</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">078000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PNFS</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PDN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PNR</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">543.62</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in portable x-ray fluorescence spectrometry :</subfield><subfield code="b">instrumentation, application and interpretation /</subfield><subfield code="c">edited by B. Lee Drake, Brandi L. MacDonald.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Royal Society of Chemistry,</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on October 31, 2022).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Categorization -- 1.3 A Brief History of Portable XRF -- 1.4 The Adoption of pXRF and Topics in This Volume -- References -- Chapter 2 Principles of X-ray Fluorescence -- 2.1 What Is Fluorescence? -- 2.2 How Does X-ray Fluorescence Work? -- 2.3 The XRF Spectrum -- 2.4 Spectra and True Atomic Abundance -- 2.5 First Bias: How Deep Can You Measure? -- 2.6 Second Bias: All Elements Don't Fluoresce Equally Well -- 2.7 Third Bias: Attenuation on the Way to the Detector -- 2.8 Fourth Bias: Attenuation From the Tube -- 2.9 Fifth Bias: Excitation on the Absorption Edge -- 2.10 Sixth Bias: Overlaps -- 2.11 Geometry -- 2.12 How Do You Control Light? -- 2.13 Voltage -- 2.14 Current -- 2.15 Filters -- 2.16 Time -- 2.17 Atmosphere -- 2.18 Filter Selection -- 2.19 Energy/Voltage -- 2.20 Atmospheric Control -- 2.21 Other Spectral Modifications -- 2.22 Collimator -- 2.23 Lenses -- 2.24 Masks -- 2.25 Diffraction Crystal -- 2.26 Summary -- References -- Chapter 3 Qualitative Analysis Using pXRF -- 3.1 Introduction to Qualitative Analysis -- 3.2 Qualitative Analysis of Paintings -- 3.3 Normalization -- 3.4 Log Scales -- 3.5 Qualitative Investigations -- Artwork Attributions -- Acknowledgements -- References -- Chapter 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Quantification -- 4.3 Empirical Quantification -- 4.4 Fundamental Parameters Quantification -- 4.5 Quantification Summary -- 4.6 Normalization -- 4.7 Hypothesis Testing -- 4.8 Quantitative Analysis Conclusion -- References -- Chapter 5 Features of Portable XRF Devices and Their Safe Handling -- 5.1 Features of Portable XRF Devices -- 5.2 Characteristic Devices -- 5.3 Analysis of Thin Samples -- 5.4 Analysis of Thick Samples -- 5.5 Analysis of the Human Body or Human-derived Samples.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6 Analysis of Archaeological Materials and Cultural Properties -- 5.7 Analysis of Drainage Water -- 5.8 Validity for Using Portable Devices -- References -- Chapter 6 Industrial Applications of pXRF -- 6.1 Introduction -- 6.2 Metal Application Segment -- 6.2.1 Calibration Approaches -- 6.2.2 Intensity -- 6.2.3 Matrix Correction -- 6.2.4 Grade Identification Process -- 6.2.5 Analyzing Samples -- 6.2.6 Tramp Element Functionality -- 6.2.7 Nominal Chemistry Function -- 6.2.8 Accuracy Improvement for Grade ID and Chemistry -- 6.2.9 PMI Applications -- 6.2.10 Precious Metal Applications -- 6.2.11 Coating Thickness Analysis -- 6.3 Consumer Product Testing with PXRF -- 6.4 Soil Screening -- 6.5 Geochem and Mining Applications -- 6.5.1 Calibration and Calibration Approaches -- 6.5.2 Analytical Challenges -- 6.5.3 Detection Limit -- 6.5.4 Exploration -- 6.5.5 Metallurgy and Mining Operations -- 6.6 Analysis in Organic Matrix -- 6.6.1 Petrochemical Applications -- 6.6.2 Analysis of Inorganic Elements (Nutrients) in Plant Materials or Animal Waste Products -- 6.6.3 Tagging/Authentication Analysis -- 6.6.4 Exotic Industrial Applications -- Acknowledgements -- References -- Chapter 7 Regulatory Applications of XRF for Elemental Analysis -- Rapid Screening and Accurate Quantitative Analysis of Toxic and Nutrient Elements in Consumer Products -- 7.1 Introduction and Overview -- 7.2 Handheld/Portable XRF Systems -- 7.3 Safety Considerations -- 7.4 Screening Applications of XRF -- 7.4.1 Sample Handling -- 7.4.2 XRF Spectral Interpretation -- 7.4.3 Avoiding False Positives -- 7.4.4 Avoiding False Negatives -- 7.4.5 Recommendations and Best Practices for Field Screening -- 7.5 Accurate Quantitative Analysis Using Handheld/Portable XRF -- 7.5.1 XRF versus ICP-MS Methods -- 7.5.2 Preparing Representative Samples -- 7.5.3 Preparing Suitable Standards.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5.4 Developing a Quantitative XRF Method -- 7.6 Conclusions, Recommendations, and Future Prospects -- 7.6.1 Use of XRF for Screening -- 7.6.2 Use of XRF for Quantitative Analysis -- 7.6.3 Future Prospects -- Acknowledgements -- References -- Chapter 8 Chemical Analysis of Natural Waters Using Portable X-Ray Fluorescence Spectrometry -- 8.1 Why Do We Analyze the Chemistry of Water? -- 8.2 Applications of pXRF in Water -- 8.3 Preparing for the Analysis of Water -- 8.4 Instrumentation Setup for Analysis of Waters -- 8.5 Calibration and Quantification -- 8.6 Case Example: Characterizing Brine Density with pXRF -- 8.7 Approach to Quantifying Brine Density -- 8.8 Conclusions -- Acknowledgements -- References -- Chapter 9 X-ray Fluorescence Applications in Agriculture -- 9.1 Introduction -- 9.2 The Physics of XRF -- 9.3 Challenges in Four Categories of Analysis: Plant, Soil, Manure, and Fertilizer -- 9.3.1 Soils -- 9.3.2 Plants -- 9.3.3 Fertilizers -- 9.3.4 Manure -- 9.4 Calibration Approaches -- 9.5 Combined pXRF, Chemometrics and FTIR Calibrations -- 9.5.1 XRF Applications Coupled with SR-IMS Molecular Spectroscopy -- 9.6 Report Generation -- How to Transform Data into Actionable Information for Clients -- 9.7 Low Concentrations -- 9.8 Conclusions and Future Research -- Abbreviations -- Acknowledgements -- References -- Chapter 10 Subsurface Characterization for Energy Applications -- 10.1 Introduction -- 10.2 XRF Elemental Analysis -- 10.2.1 Types of X-ray Fluorescence Analysis -- 10.2.2 Excitation Parameters -- 10.2.3 Measurement Time or Step Size -- 10.2.4 Analysis Depth -- 10.3 Workflow: Data Collection on Core and Cuttings -- 10.3.1 Safety -- 10.3.2 Excitation Parameters -- 10.3.3 Choosing Spot, Line, or Map Measurements -- 10.3.4 Spot Measurements on Core -- 10.3.5 Continuous Line Measurements on the Core.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.6 Spatial Geochemistry Mapping on Core and Cuttings -- 10.3.7 Bulk Geochemistry on Cuttings -- 10.3.8 Collecting Allied Data to Augment XRF Analyses -- 10.3.9 Quality Control -- 10.4 Workflow: Data Reduction and Quantification -- 10.4.1 Uncertainty in XRF Analysis -- 10.4.2 ED-XRF Spectra Artifacts -- 10.4.3 Data Pre-processing -- 10.4.4 Quantification -- 10.4.5 Calibrating Line Scanning Instruments -- 10.4.6 Calibration of Micro-XRF Maps -- 10.4.7 Lower Limits of Quantification and Detection -- 10.4.8 Normalization of Quantified Data -- 10.4.9 The Future of Calibrations -- 10.5 Chemofacies -- 10.5.1 Geochemical Signatures and Chemofacies -- 10.5.2 Defining Chemofacies -- 10.5.3 Chemostratigraphy as a Correlative Tool -- 10.5.4 Chemofacies Applied to Drill Cuttings -- 10.6 Elemental Proxies -- 10.6.1 Major Elements -- 10.6.2 Trace Elements -- 10.7 Conclusions -- References -- Chapter 11 In Situ X-ray Spectrometers in Space Exploration -- 11.1 Introduction -- 11.2 History of Landed X-ray Spectrometers -- 11.3 Challenges of In Situ Planetary X-ray Spectroscopy -- 11.3.1 Latency -- 11.3.2 Data -- 11.3.3 Power -- 11.3.4 Varying Thermal Environment -- 11.3.5 Limited Sample Preparation -- 11.3.6 Dust Cover -- 11.3.7 Atmosphere Effects -- 11.3.8 Targeting Uncertainty -- 11.3.9 Remote Troubleshooting -- 11.3.10 Radiation -- 11.3.11 Exploring the Unknown -- 11.4 Key Discoveries and Science Enabled by Planetary X-ray Spectrometers -- 11.4.1 Introduction -- 11.4.2 Ground-truthing Remote Sensing Observations -- 11.4.3 Integrated Science with Multiple Rover Instruments -- 11.4.4 In Situ XRF Results from Multiple Mars Locales -- 11.4.5 Martian Meteorites -- 11.5 Planetary X-ray Diffraction -- 11.5.1 Introduction -- 11.5.2 Challenges of Planetary XRD -- 11.5.3 Science Enabled by the First Martian XRD -- 11.6 Summary -- Acknowledgements -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 12 Evolution of Portable Devices: Using EDXRF to Study Works of Art -- 12.1 Introduction -- 12.2 Evolution of EDXRF Devices and Applications -- 12.3 Conclusions -- 12.4 A Look to the Future -- References -- Chapter 13 Quantitative Analysis of Archaeological and Historical Brasses Using Handheld X-ray Fluorescence Spectrometry -- 13.1 Introduction -- 13.2 Brass: Composition and Material Properties -- 13.3 Ancient and Historical Brasses: A Brief History -- 13.4 Benefits and Advantages to the hhXRF Analysis of Archaeological and Historical Metals -- 13.5 Quantitative hhXRF Analyses of Archaeological and Historical Brasses: Limitations, Challenges, and Contemporary Practices -- 13.5.1 Sample Limitations -- 13.5.2 Spectral Interference and Matrix Effects -- 13.5.3 Quantification Methods and Reference Standards -- 13.6 Case Study: Quantitative hhXRF Analyses of Brass Tinkling Cones from Fort Albany, Northern Ontario, Canada -- 13.6.1 Acquisition of CRMs -- 13.6.2 Instrumentation, Analysis Conditions, and Evaluation of CRMs -- 13.6.3 Construction of Empirical Calibrations -- 13.6.4 Evaluating the Analytical Quality of the Calibrations -- 13.6.5 Quantitative Analyses of the Brass Tinkling Cones from Fort Albany -- 13.7 Conclusions -- Acknowledgements -- References -- Chapter 14 pXRF Analysis of Heritage Glass -- 14.1 Introduction -- 14.2 Analysis of Heritage Glasses: Research Questions, Sample Conditions, and Instrument Parameters -- 14.2.1 Elemental Characterization of Heritage Glasses -- 14.2.2 Sample Condition, Preparation, and Analytical Protocols -- 14.3 Quantification and Calibration -- 14.3.1 Mathematical Methods -- 14.3.2 Empirical Calibrations -- 14.3.3 Semi-quantitative Methods -- 14.4 Discussion and Conclusions -- References.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">X-ray spectroscopy.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85148744</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluorescence spectroscopy.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85049411</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Spectroscopie des rayons X.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Spectroscopie de fluorescence.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">x-ray spectroscopy.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluorescence spectroscopy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">X-ray spectroscopy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Drake, B. Lee,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">MacDonald, Brandi L.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1788014227</subfield><subfield code="z">9781788014229</subfield><subfield code="w">(OCoLC)1250511895</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3424170</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3424170</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">21017351</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">303217752</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3424170</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1348924185 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:48:02Z |
institution | BVB |
isbn | 9781839162701 1839162708 9781839162695 1839162694 |
language | English |
oclc_num | 1348924185 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Royal Society of Chemistry, |
record_format | marc |
spelling | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / edited by B. Lee Drake, Brandi L. MacDonald. Cambridge : Royal Society of Chemistry, [2023] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from digital title page (viewed on October 31, 2022). Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal. Intro -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Categorization -- 1.3 A Brief History of Portable XRF -- 1.4 The Adoption of pXRF and Topics in This Volume -- References -- Chapter 2 Principles of X-ray Fluorescence -- 2.1 What Is Fluorescence? -- 2.2 How Does X-ray Fluorescence Work? -- 2.3 The XRF Spectrum -- 2.4 Spectra and True Atomic Abundance -- 2.5 First Bias: How Deep Can You Measure? -- 2.6 Second Bias: All Elements Don't Fluoresce Equally Well -- 2.7 Third Bias: Attenuation on the Way to the Detector -- 2.8 Fourth Bias: Attenuation From the Tube -- 2.9 Fifth Bias: Excitation on the Absorption Edge -- 2.10 Sixth Bias: Overlaps -- 2.11 Geometry -- 2.12 How Do You Control Light? -- 2.13 Voltage -- 2.14 Current -- 2.15 Filters -- 2.16 Time -- 2.17 Atmosphere -- 2.18 Filter Selection -- 2.19 Energy/Voltage -- 2.20 Atmospheric Control -- 2.21 Other Spectral Modifications -- 2.22 Collimator -- 2.23 Lenses -- 2.24 Masks -- 2.25 Diffraction Crystal -- 2.26 Summary -- References -- Chapter 3 Qualitative Analysis Using pXRF -- 3.1 Introduction to Qualitative Analysis -- 3.2 Qualitative Analysis of Paintings -- 3.3 Normalization -- 3.4 Log Scales -- 3.5 Qualitative Investigations -- Artwork Attributions -- Acknowledgements -- References -- Chapter 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Quantification -- 4.3 Empirical Quantification -- 4.4 Fundamental Parameters Quantification -- 4.5 Quantification Summary -- 4.6 Normalization -- 4.7 Hypothesis Testing -- 4.8 Quantitative Analysis Conclusion -- References -- Chapter 5 Features of Portable XRF Devices and Their Safe Handling -- 5.1 Features of Portable XRF Devices -- 5.2 Characteristic Devices -- 5.3 Analysis of Thin Samples -- 5.4 Analysis of Thick Samples -- 5.5 Analysis of the Human Body or Human-derived Samples. 5.6 Analysis of Archaeological Materials and Cultural Properties -- 5.7 Analysis of Drainage Water -- 5.8 Validity for Using Portable Devices -- References -- Chapter 6 Industrial Applications of pXRF -- 6.1 Introduction -- 6.2 Metal Application Segment -- 6.2.1 Calibration Approaches -- 6.2.2 Intensity -- 6.2.3 Matrix Correction -- 6.2.4 Grade Identification Process -- 6.2.5 Analyzing Samples -- 6.2.6 Tramp Element Functionality -- 6.2.7 Nominal Chemistry Function -- 6.2.8 Accuracy Improvement for Grade ID and Chemistry -- 6.2.9 PMI Applications -- 6.2.10 Precious Metal Applications -- 6.2.11 Coating Thickness Analysis -- 6.3 Consumer Product Testing with PXRF -- 6.4 Soil Screening -- 6.5 Geochem and Mining Applications -- 6.5.1 Calibration and Calibration Approaches -- 6.5.2 Analytical Challenges -- 6.5.3 Detection Limit -- 6.5.4 Exploration -- 6.5.5 Metallurgy and Mining Operations -- 6.6 Analysis in Organic Matrix -- 6.6.1 Petrochemical Applications -- 6.6.2 Analysis of Inorganic Elements (Nutrients) in Plant Materials or Animal Waste Products -- 6.6.3 Tagging/Authentication Analysis -- 6.6.4 Exotic Industrial Applications -- Acknowledgements -- References -- Chapter 7 Regulatory Applications of XRF for Elemental Analysis -- Rapid Screening and Accurate Quantitative Analysis of Toxic and Nutrient Elements in Consumer Products -- 7.1 Introduction and Overview -- 7.2 Handheld/Portable XRF Systems -- 7.3 Safety Considerations -- 7.4 Screening Applications of XRF -- 7.4.1 Sample Handling -- 7.4.2 XRF Spectral Interpretation -- 7.4.3 Avoiding False Positives -- 7.4.4 Avoiding False Negatives -- 7.4.5 Recommendations and Best Practices for Field Screening -- 7.5 Accurate Quantitative Analysis Using Handheld/Portable XRF -- 7.5.1 XRF versus ICP-MS Methods -- 7.5.2 Preparing Representative Samples -- 7.5.3 Preparing Suitable Standards. 7.5.4 Developing a Quantitative XRF Method -- 7.6 Conclusions, Recommendations, and Future Prospects -- 7.6.1 Use of XRF for Screening -- 7.6.2 Use of XRF for Quantitative Analysis -- 7.6.3 Future Prospects -- Acknowledgements -- References -- Chapter 8 Chemical Analysis of Natural Waters Using Portable X-Ray Fluorescence Spectrometry -- 8.1 Why Do We Analyze the Chemistry of Water? -- 8.2 Applications of pXRF in Water -- 8.3 Preparing for the Analysis of Water -- 8.4 Instrumentation Setup for Analysis of Waters -- 8.5 Calibration and Quantification -- 8.6 Case Example: Characterizing Brine Density with pXRF -- 8.7 Approach to Quantifying Brine Density -- 8.8 Conclusions -- Acknowledgements -- References -- Chapter 9 X-ray Fluorescence Applications in Agriculture -- 9.1 Introduction -- 9.2 The Physics of XRF -- 9.3 Challenges in Four Categories of Analysis: Plant, Soil, Manure, and Fertilizer -- 9.3.1 Soils -- 9.3.2 Plants -- 9.3.3 Fertilizers -- 9.3.4 Manure -- 9.4 Calibration Approaches -- 9.5 Combined pXRF, Chemometrics and FTIR Calibrations -- 9.5.1 XRF Applications Coupled with SR-IMS Molecular Spectroscopy -- 9.6 Report Generation -- How to Transform Data into Actionable Information for Clients -- 9.7 Low Concentrations -- 9.8 Conclusions and Future Research -- Abbreviations -- Acknowledgements -- References -- Chapter 10 Subsurface Characterization for Energy Applications -- 10.1 Introduction -- 10.2 XRF Elemental Analysis -- 10.2.1 Types of X-ray Fluorescence Analysis -- 10.2.2 Excitation Parameters -- 10.2.3 Measurement Time or Step Size -- 10.2.4 Analysis Depth -- 10.3 Workflow: Data Collection on Core and Cuttings -- 10.3.1 Safety -- 10.3.2 Excitation Parameters -- 10.3.3 Choosing Spot, Line, or Map Measurements -- 10.3.4 Spot Measurements on Core -- 10.3.5 Continuous Line Measurements on the Core. 10.3.6 Spatial Geochemistry Mapping on Core and Cuttings -- 10.3.7 Bulk Geochemistry on Cuttings -- 10.3.8 Collecting Allied Data to Augment XRF Analyses -- 10.3.9 Quality Control -- 10.4 Workflow: Data Reduction and Quantification -- 10.4.1 Uncertainty in XRF Analysis -- 10.4.2 ED-XRF Spectra Artifacts -- 10.4.3 Data Pre-processing -- 10.4.4 Quantification -- 10.4.5 Calibrating Line Scanning Instruments -- 10.4.6 Calibration of Micro-XRF Maps -- 10.4.7 Lower Limits of Quantification and Detection -- 10.4.8 Normalization of Quantified Data -- 10.4.9 The Future of Calibrations -- 10.5 Chemofacies -- 10.5.1 Geochemical Signatures and Chemofacies -- 10.5.2 Defining Chemofacies -- 10.5.3 Chemostratigraphy as a Correlative Tool -- 10.5.4 Chemofacies Applied to Drill Cuttings -- 10.6 Elemental Proxies -- 10.6.1 Major Elements -- 10.6.2 Trace Elements -- 10.7 Conclusions -- References -- Chapter 11 In Situ X-ray Spectrometers in Space Exploration -- 11.1 Introduction -- 11.2 History of Landed X-ray Spectrometers -- 11.3 Challenges of In Situ Planetary X-ray Spectroscopy -- 11.3.1 Latency -- 11.3.2 Data -- 11.3.3 Power -- 11.3.4 Varying Thermal Environment -- 11.3.5 Limited Sample Preparation -- 11.3.6 Dust Cover -- 11.3.7 Atmosphere Effects -- 11.3.8 Targeting Uncertainty -- 11.3.9 Remote Troubleshooting -- 11.3.10 Radiation -- 11.3.11 Exploring the Unknown -- 11.4 Key Discoveries and Science Enabled by Planetary X-ray Spectrometers -- 11.4.1 Introduction -- 11.4.2 Ground-truthing Remote Sensing Observations -- 11.4.3 Integrated Science with Multiple Rover Instruments -- 11.4.4 In Situ XRF Results from Multiple Mars Locales -- 11.4.5 Martian Meteorites -- 11.5 Planetary X-ray Diffraction -- 11.5.1 Introduction -- 11.5.2 Challenges of Planetary XRD -- 11.5.3 Science Enabled by the First Martian XRD -- 11.6 Summary -- Acknowledgements -- References. Chapter 12 Evolution of Portable Devices: Using EDXRF to Study Works of Art -- 12.1 Introduction -- 12.2 Evolution of EDXRF Devices and Applications -- 12.3 Conclusions -- 12.4 A Look to the Future -- References -- Chapter 13 Quantitative Analysis of Archaeological and Historical Brasses Using Handheld X-ray Fluorescence Spectrometry -- 13.1 Introduction -- 13.2 Brass: Composition and Material Properties -- 13.3 Ancient and Historical Brasses: A Brief History -- 13.4 Benefits and Advantages to the hhXRF Analysis of Archaeological and Historical Metals -- 13.5 Quantitative hhXRF Analyses of Archaeological and Historical Brasses: Limitations, Challenges, and Contemporary Practices -- 13.5.1 Sample Limitations -- 13.5.2 Spectral Interference and Matrix Effects -- 13.5.3 Quantification Methods and Reference Standards -- 13.6 Case Study: Quantitative hhXRF Analyses of Brass Tinkling Cones from Fort Albany, Northern Ontario, Canada -- 13.6.1 Acquisition of CRMs -- 13.6.2 Instrumentation, Analysis Conditions, and Evaluation of CRMs -- 13.6.3 Construction of Empirical Calibrations -- 13.6.4 Evaluating the Analytical Quality of the Calibrations -- 13.6.5 Quantitative Analyses of the Brass Tinkling Cones from Fort Albany -- 13.7 Conclusions -- Acknowledgements -- References -- Chapter 14 pXRF Analysis of Heritage Glass -- 14.1 Introduction -- 14.2 Analysis of Heritage Glasses: Research Questions, Sample Conditions, and Instrument Parameters -- 14.2.1 Elemental Characterization of Heritage Glasses -- 14.2.2 Sample Condition, Preparation, and Analytical Protocols -- 14.3 Quantification and Calibration -- 14.3.1 Mathematical Methods -- 14.3.2 Empirical Calibrations -- 14.3.3 Semi-quantitative Methods -- 14.4 Discussion and Conclusions -- References. X-ray spectroscopy. http://id.loc.gov/authorities/subjects/sh85148744 Fluorescence spectroscopy. http://id.loc.gov/authorities/subjects/sh85049411 Spectroscopie des rayons X. Spectroscopie de fluorescence. x-ray spectroscopy. aat Fluorescence spectroscopy fast X-ray spectroscopy fast Drake, B. Lee, editor. MacDonald, Brandi L., editor. Print version: 1788014227 9781788014229 (OCoLC)1250511895 |
spellingShingle | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / Intro -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Categorization -- 1.3 A Brief History of Portable XRF -- 1.4 The Adoption of pXRF and Topics in This Volume -- References -- Chapter 2 Principles of X-ray Fluorescence -- 2.1 What Is Fluorescence? -- 2.2 How Does X-ray Fluorescence Work? -- 2.3 The XRF Spectrum -- 2.4 Spectra and True Atomic Abundance -- 2.5 First Bias: How Deep Can You Measure? -- 2.6 Second Bias: All Elements Don't Fluoresce Equally Well -- 2.7 Third Bias: Attenuation on the Way to the Detector -- 2.8 Fourth Bias: Attenuation From the Tube -- 2.9 Fifth Bias: Excitation on the Absorption Edge -- 2.10 Sixth Bias: Overlaps -- 2.11 Geometry -- 2.12 How Do You Control Light? -- 2.13 Voltage -- 2.14 Current -- 2.15 Filters -- 2.16 Time -- 2.17 Atmosphere -- 2.18 Filter Selection -- 2.19 Energy/Voltage -- 2.20 Atmospheric Control -- 2.21 Other Spectral Modifications -- 2.22 Collimator -- 2.23 Lenses -- 2.24 Masks -- 2.25 Diffraction Crystal -- 2.26 Summary -- References -- Chapter 3 Qualitative Analysis Using pXRF -- 3.1 Introduction to Qualitative Analysis -- 3.2 Qualitative Analysis of Paintings -- 3.3 Normalization -- 3.4 Log Scales -- 3.5 Qualitative Investigations -- Artwork Attributions -- Acknowledgements -- References -- Chapter 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Quantification -- 4.3 Empirical Quantification -- 4.4 Fundamental Parameters Quantification -- 4.5 Quantification Summary -- 4.6 Normalization -- 4.7 Hypothesis Testing -- 4.8 Quantitative Analysis Conclusion -- References -- Chapter 5 Features of Portable XRF Devices and Their Safe Handling -- 5.1 Features of Portable XRF Devices -- 5.2 Characteristic Devices -- 5.3 Analysis of Thin Samples -- 5.4 Analysis of Thick Samples -- 5.5 Analysis of the Human Body or Human-derived Samples. 5.6 Analysis of Archaeological Materials and Cultural Properties -- 5.7 Analysis of Drainage Water -- 5.8 Validity for Using Portable Devices -- References -- Chapter 6 Industrial Applications of pXRF -- 6.1 Introduction -- 6.2 Metal Application Segment -- 6.2.1 Calibration Approaches -- 6.2.2 Intensity -- 6.2.3 Matrix Correction -- 6.2.4 Grade Identification Process -- 6.2.5 Analyzing Samples -- 6.2.6 Tramp Element Functionality -- 6.2.7 Nominal Chemistry Function -- 6.2.8 Accuracy Improvement for Grade ID and Chemistry -- 6.2.9 PMI Applications -- 6.2.10 Precious Metal Applications -- 6.2.11 Coating Thickness Analysis -- 6.3 Consumer Product Testing with PXRF -- 6.4 Soil Screening -- 6.5 Geochem and Mining Applications -- 6.5.1 Calibration and Calibration Approaches -- 6.5.2 Analytical Challenges -- 6.5.3 Detection Limit -- 6.5.4 Exploration -- 6.5.5 Metallurgy and Mining Operations -- 6.6 Analysis in Organic Matrix -- 6.6.1 Petrochemical Applications -- 6.6.2 Analysis of Inorganic Elements (Nutrients) in Plant Materials or Animal Waste Products -- 6.6.3 Tagging/Authentication Analysis -- 6.6.4 Exotic Industrial Applications -- Acknowledgements -- References -- Chapter 7 Regulatory Applications of XRF for Elemental Analysis -- Rapid Screening and Accurate Quantitative Analysis of Toxic and Nutrient Elements in Consumer Products -- 7.1 Introduction and Overview -- 7.2 Handheld/Portable XRF Systems -- 7.3 Safety Considerations -- 7.4 Screening Applications of XRF -- 7.4.1 Sample Handling -- 7.4.2 XRF Spectral Interpretation -- 7.4.3 Avoiding False Positives -- 7.4.4 Avoiding False Negatives -- 7.4.5 Recommendations and Best Practices for Field Screening -- 7.5 Accurate Quantitative Analysis Using Handheld/Portable XRF -- 7.5.1 XRF versus ICP-MS Methods -- 7.5.2 Preparing Representative Samples -- 7.5.3 Preparing Suitable Standards. 7.5.4 Developing a Quantitative XRF Method -- 7.6 Conclusions, Recommendations, and Future Prospects -- 7.6.1 Use of XRF for Screening -- 7.6.2 Use of XRF for Quantitative Analysis -- 7.6.3 Future Prospects -- Acknowledgements -- References -- Chapter 8 Chemical Analysis of Natural Waters Using Portable X-Ray Fluorescence Spectrometry -- 8.1 Why Do We Analyze the Chemistry of Water? -- 8.2 Applications of pXRF in Water -- 8.3 Preparing for the Analysis of Water -- 8.4 Instrumentation Setup for Analysis of Waters -- 8.5 Calibration and Quantification -- 8.6 Case Example: Characterizing Brine Density with pXRF -- 8.7 Approach to Quantifying Brine Density -- 8.8 Conclusions -- Acknowledgements -- References -- Chapter 9 X-ray Fluorescence Applications in Agriculture -- 9.1 Introduction -- 9.2 The Physics of XRF -- 9.3 Challenges in Four Categories of Analysis: Plant, Soil, Manure, and Fertilizer -- 9.3.1 Soils -- 9.3.2 Plants -- 9.3.3 Fertilizers -- 9.3.4 Manure -- 9.4 Calibration Approaches -- 9.5 Combined pXRF, Chemometrics and FTIR Calibrations -- 9.5.1 XRF Applications Coupled with SR-IMS Molecular Spectroscopy -- 9.6 Report Generation -- How to Transform Data into Actionable Information for Clients -- 9.7 Low Concentrations -- 9.8 Conclusions and Future Research -- Abbreviations -- Acknowledgements -- References -- Chapter 10 Subsurface Characterization for Energy Applications -- 10.1 Introduction -- 10.2 XRF Elemental Analysis -- 10.2.1 Types of X-ray Fluorescence Analysis -- 10.2.2 Excitation Parameters -- 10.2.3 Measurement Time or Step Size -- 10.2.4 Analysis Depth -- 10.3 Workflow: Data Collection on Core and Cuttings -- 10.3.1 Safety -- 10.3.2 Excitation Parameters -- 10.3.3 Choosing Spot, Line, or Map Measurements -- 10.3.4 Spot Measurements on Core -- 10.3.5 Continuous Line Measurements on the Core. 10.3.6 Spatial Geochemistry Mapping on Core and Cuttings -- 10.3.7 Bulk Geochemistry on Cuttings -- 10.3.8 Collecting Allied Data to Augment XRF Analyses -- 10.3.9 Quality Control -- 10.4 Workflow: Data Reduction and Quantification -- 10.4.1 Uncertainty in XRF Analysis -- 10.4.2 ED-XRF Spectra Artifacts -- 10.4.3 Data Pre-processing -- 10.4.4 Quantification -- 10.4.5 Calibrating Line Scanning Instruments -- 10.4.6 Calibration of Micro-XRF Maps -- 10.4.7 Lower Limits of Quantification and Detection -- 10.4.8 Normalization of Quantified Data -- 10.4.9 The Future of Calibrations -- 10.5 Chemofacies -- 10.5.1 Geochemical Signatures and Chemofacies -- 10.5.2 Defining Chemofacies -- 10.5.3 Chemostratigraphy as a Correlative Tool -- 10.5.4 Chemofacies Applied to Drill Cuttings -- 10.6 Elemental Proxies -- 10.6.1 Major Elements -- 10.6.2 Trace Elements -- 10.7 Conclusions -- References -- Chapter 11 In Situ X-ray Spectrometers in Space Exploration -- 11.1 Introduction -- 11.2 History of Landed X-ray Spectrometers -- 11.3 Challenges of In Situ Planetary X-ray Spectroscopy -- 11.3.1 Latency -- 11.3.2 Data -- 11.3.3 Power -- 11.3.4 Varying Thermal Environment -- 11.3.5 Limited Sample Preparation -- 11.3.6 Dust Cover -- 11.3.7 Atmosphere Effects -- 11.3.8 Targeting Uncertainty -- 11.3.9 Remote Troubleshooting -- 11.3.10 Radiation -- 11.3.11 Exploring the Unknown -- 11.4 Key Discoveries and Science Enabled by Planetary X-ray Spectrometers -- 11.4.1 Introduction -- 11.4.2 Ground-truthing Remote Sensing Observations -- 11.4.3 Integrated Science with Multiple Rover Instruments -- 11.4.4 In Situ XRF Results from Multiple Mars Locales -- 11.4.5 Martian Meteorites -- 11.5 Planetary X-ray Diffraction -- 11.5.1 Introduction -- 11.5.2 Challenges of Planetary XRD -- 11.5.3 Science Enabled by the First Martian XRD -- 11.6 Summary -- Acknowledgements -- References. Chapter 12 Evolution of Portable Devices: Using EDXRF to Study Works of Art -- 12.1 Introduction -- 12.2 Evolution of EDXRF Devices and Applications -- 12.3 Conclusions -- 12.4 A Look to the Future -- References -- Chapter 13 Quantitative Analysis of Archaeological and Historical Brasses Using Handheld X-ray Fluorescence Spectrometry -- 13.1 Introduction -- 13.2 Brass: Composition and Material Properties -- 13.3 Ancient and Historical Brasses: A Brief History -- 13.4 Benefits and Advantages to the hhXRF Analysis of Archaeological and Historical Metals -- 13.5 Quantitative hhXRF Analyses of Archaeological and Historical Brasses: Limitations, Challenges, and Contemporary Practices -- 13.5.1 Sample Limitations -- 13.5.2 Spectral Interference and Matrix Effects -- 13.5.3 Quantification Methods and Reference Standards -- 13.6 Case Study: Quantitative hhXRF Analyses of Brass Tinkling Cones from Fort Albany, Northern Ontario, Canada -- 13.6.1 Acquisition of CRMs -- 13.6.2 Instrumentation, Analysis Conditions, and Evaluation of CRMs -- 13.6.3 Construction of Empirical Calibrations -- 13.6.4 Evaluating the Analytical Quality of the Calibrations -- 13.6.5 Quantitative Analyses of the Brass Tinkling Cones from Fort Albany -- 13.7 Conclusions -- Acknowledgements -- References -- Chapter 14 pXRF Analysis of Heritage Glass -- 14.1 Introduction -- 14.2 Analysis of Heritage Glasses: Research Questions, Sample Conditions, and Instrument Parameters -- 14.2.1 Elemental Characterization of Heritage Glasses -- 14.2.2 Sample Condition, Preparation, and Analytical Protocols -- 14.3 Quantification and Calibration -- 14.3.1 Mathematical Methods -- 14.3.2 Empirical Calibrations -- 14.3.3 Semi-quantitative Methods -- 14.4 Discussion and Conclusions -- References. X-ray spectroscopy. http://id.loc.gov/authorities/subjects/sh85148744 Fluorescence spectroscopy. http://id.loc.gov/authorities/subjects/sh85049411 Spectroscopie des rayons X. Spectroscopie de fluorescence. x-ray spectroscopy. aat Fluorescence spectroscopy fast X-ray spectroscopy fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85148744 http://id.loc.gov/authorities/subjects/sh85049411 |
title | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / |
title_auth | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / |
title_exact_search | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / |
title_full | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / edited by B. Lee Drake, Brandi L. MacDonald. |
title_fullStr | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / edited by B. Lee Drake, Brandi L. MacDonald. |
title_full_unstemmed | Advances in portable x-ray fluorescence spectrometry : instrumentation, application and interpretation / edited by B. Lee Drake, Brandi L. MacDonald. |
title_short | Advances in portable x-ray fluorescence spectrometry : |
title_sort | advances in portable x ray fluorescence spectrometry instrumentation application and interpretation |
title_sub | instrumentation, application and interpretation / |
topic | X-ray spectroscopy. http://id.loc.gov/authorities/subjects/sh85148744 Fluorescence spectroscopy. http://id.loc.gov/authorities/subjects/sh85049411 Spectroscopie des rayons X. Spectroscopie de fluorescence. x-ray spectroscopy. aat Fluorescence spectroscopy fast X-ray spectroscopy fast |
topic_facet | X-ray spectroscopy. Fluorescence spectroscopy. Spectroscopie des rayons X. Spectroscopie de fluorescence. x-ray spectroscopy. Fluorescence spectroscopy X-ray spectroscopy |
work_keys_str_mv | AT drakeblee advancesinportablexrayfluorescencespectrometryinstrumentationapplicationandinterpretation AT macdonaldbrandil advancesinportablexrayfluorescencespectrometryinstrumentationapplicationandinterpretation |