Dēta anaritikusu no tame no kikai gakushū nyūmon :: arugorizumu, jitsurei, kēsu sutadi /
データアナリティクスのための機械学習入門 : アルゴリズム・実例・ケーススタディ /
"Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | Japanese English |
Veröffentlicht: |
Tōkyō-to Shinjuku-ku :
Kindai Kagakusha,
2022.
|
Ausgabe: | Shohan. |
Schriftenreihe: | Sekai hyōjun MIT kyōkasho.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals"--Provided by publisher. |
Beschreibung: | 1 online resource (xvi, 454 pages). : illustrations. |
Bibliographie: | Includes bibliographical references (pages 438-447) and index. |
ISBN: | 9784764972902 4764972905 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1347378768 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 221013s2022 ja a ob 001 0 jpn d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCF |d OCLCO |d OCLCL | ||
066 | |c Hani |c $1 | ||
020 | |a 9784764972902 |q (electronic bk.) | ||
020 | |a 4764972905 |q (electronic bk.) | ||
020 | |z 9784764906174 | ||
035 | |a (OCoLC)1347378768 | ||
041 | 1 | |a jpn |h eng | |
050 | 4 | |a Q325.5 |b .K455163 2022 | |
082 | 7 | |a 006.3/1 |2 23/eng/20221017 | |
084 | |a 007.13 |2 njb/9 | ||
049 | |a MAIN | ||
100 | 1 | |a Kelleher, John D., |d 1974- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJkTbwcmCvMvcxQJmydxXd |0 http://id.loc.gov/authorities/names/n2014074189 | |
240 | 1 | 0 | |a Fundamentals of machine learning for predictive data analytics. |l Japanese |
245 | 1 | 0 | |6 880-01 |a Dēta anaritikusu no tame no kikai gakushū nyūmon : |b arugorizumu, jitsurei, kēsu sutadi / |c cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. |
246 | 3 | 1 | |a Fundamentals of machine learning for predictive data analytics : |b algorithms, worked examples, and case studies |
250 | |6 880-02 |a Shohan. | ||
264 | 1 | |6 880-03 |a Tōkyō-to Shinjuku-ku : |b Kindai Kagakusha, |c 2022. | |
300 | |a 1 online resource (xvi, 454 pages). : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |6 880-04 |a Sekai hyōjun MIT kyōkasho | |
588 | |a Online resource; title from PDF title page (EBSCO, viewed October 17, 2022). | ||
504 | |a Includes bibliographical references (pages 438-447) and index. | ||
520 | |a "Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals"--Provided by publisher. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a Prediction theory. |0 http://id.loc.gov/authorities/subjects/sh85106258 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a Théorie de la prévision. | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Prediction theory |2 fast | |
650 | 0 | 7 | |6 880-05 |a Kikai gakushū. |2 jlabsh/4 |
700 | 1 | |a Mac Namee, Brian, |e author. | |
700 | 1 | |a D'Arcy, Aoife, |d 1978- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjxMytRFtfcDBxJXmJMqXq |0 http://id.loc.gov/authorities/names/n2014074193 | |
700 | 1 | |6 880-06 |a Miyaoka, Etsuo, |e translator. | |
830 | 0 | |6 880-07 |a Sekai hyōjun MIT kyōkasho. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3365775 |3 Volltext |
880 | 1 | 0 | |6 245-01/$1 |a データアナリティクスのための機械学習入門 : |b アルゴリズム・実例・ケーススタディ / |c 著J.D. ケラハー, B. マクナミー, A. ダーシー ; 訳宮岡悦良, 下川朝有, 黒沢匠雅 = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. |
880 | |6 250-02/$1 |a 初版. | ||
880 | 1 | |6 264-03/$1 |a 東京都新宿区 : |b 近代科学社, |c 2022. | |
880 | 1 | |6 490-04/$1 |a 世界標準MIT教科書 | |
880 | |6 520-00/$1 |a "本書は機械学習を実際のビジネスシーンに適用してデータ分析を行うための実践書である。機械学習そのものの解説というよりは、データ分析に不可欠な機械学習の手法を駆使してビジネスを予測的に改善する手法を解説していく。具体的な適用事例を用いて説明がなされるため、読者は目的やケースに合った手法(アルゴリズム)や実際の適用方法などを効率的に身に付けることができる。原著はMITで使われている教科書であり、講義の目的に応じて章を選択可能。ビジネスで使えるデータ分析手法を最短で習得したい読者に役立つ一冊である。"-- |c Provided by publisher. | ||
880 | 0 | 7 | |6 650-05/$1 |a 機械学習. |2 jlabsh/4 |
880 | 1 | |6 700-06/$1 |a 宮岡悦良, |e translator. | |
880 | 0 | |6 830-07/$1 |a 世界標準MIT教科書. | |
938 | |a EBSCOhost |b EBSC |n 3365775 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1347378768 |
---|---|
_version_ | 1816882565644025856 |
adam_text | |
any_adam_object | |
author | Kelleher, John D., 1974- Mac Namee, Brian D'Arcy, Aoife, 1978- |
author2 | Miyaoka, Etsuo |
author2_role | trl |
author2_variant | e m em |
author_GND | http://id.loc.gov/authorities/names/n2014074189 http://id.loc.gov/authorities/names/n2014074193 |
author_facet | Kelleher, John D., 1974- Mac Namee, Brian D'Arcy, Aoife, 1978- Miyaoka, Etsuo |
author_role | aut aut aut |
author_sort | Kelleher, John D., 1974- |
author_variant | j d k jd jdk n b m nb nbm a d ad |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .K455163 2022 |
callnumber-search | Q325.5 .K455163 2022 |
callnumber-sort | Q 3325.5 K455163 42022 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)1347378768 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Shohan. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06188cam a2200697 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1347378768</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">221013s2022 ja a ob 001 0 jpn d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">Hani</subfield><subfield code="c">$1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784764972902</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">4764972905</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9784764906174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1347378768</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">jpn</subfield><subfield code="h">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.K455163 2022</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20221017</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">007.13</subfield><subfield code="2">njb/9</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kelleher, John D.,</subfield><subfield code="d">1974-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkTbwcmCvMvcxQJmydxXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2014074189</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Fundamentals of machine learning for predictive data analytics.</subfield><subfield code="l">Japanese</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="6">880-01</subfield><subfield code="a">Dēta anaritikusu no tame no kikai gakushū nyūmon :</subfield><subfield code="b">arugorizumu, jitsurei, kēsu sutadi /</subfield><subfield code="c">cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy.</subfield></datafield><datafield tag="246" ind1="3" ind2="1"><subfield code="a">Fundamentals of machine learning for predictive data analytics :</subfield><subfield code="b">algorithms, worked examples, and case studies</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="6">880-02</subfield><subfield code="a">Shohan.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="6">880-03</subfield><subfield code="a">Tōkyō-to Shinjuku-ku :</subfield><subfield code="b">Kindai Kagakusha,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 454 pages). :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="6">880-04</subfield><subfield code="a">Sekai hyōjun MIT kyōkasho</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed October 17, 2022).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 438-447) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals"--Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Prediction theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85106258</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la prévision.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prediction theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="6">880-05</subfield><subfield code="a">Kikai gakushū.</subfield><subfield code="2">jlabsh/4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mac Namee, Brian,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Arcy, Aoife,</subfield><subfield code="d">1978-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxMytRFtfcDBxJXmJMqXq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2014074193</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="6">880-06</subfield><subfield code="a">Miyaoka, Etsuo,</subfield><subfield code="e">translator.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="6">880-07</subfield><subfield code="a">Sekai hyōjun MIT kyōkasho.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3365775</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="1" ind2="0"><subfield code="6">245-01/$1</subfield><subfield code="a">データアナリティクスのための機械学習入門 :</subfield><subfield code="b">アルゴリズム・実例・ケーススタディ /</subfield><subfield code="c">著J.D. ケラハー, B. マクナミー, A. ダーシー ; 訳宮岡悦良, 下川朝有, 黒沢匠雅 = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy.</subfield></datafield><datafield tag="880" ind1=" " ind2=" "><subfield code="6">250-02/$1</subfield><subfield code="a">初版.</subfield></datafield><datafield tag="880" ind1=" " ind2="1"><subfield code="6">264-03/$1</subfield><subfield code="a">東京都新宿区 :</subfield><subfield code="b">近代科学社,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="880" ind1="1" ind2=" "><subfield code="6">490-04/$1</subfield><subfield code="a">世界標準MIT教科書</subfield></datafield><datafield tag="880" ind1=" " ind2=" "><subfield code="6">520-00/$1</subfield><subfield code="a">"本書は機械学習を実際のビジネスシーンに適用してデータ分析を行うための実践書である。機械学習そのものの解説というよりは、データ分析に不可欠な機械学習の手法を駆使してビジネスを予測的に改善する手法を解説していく。具体的な適用事例を用いて説明がなされるため、読者は目的やケースに合った手法(アルゴリズム)や実際の適用方法などを効率的に身に付けることができる。原著はMITで使われている教科書であり、講義の目的に応じて章を選択可能。ビジネスで使えるデータ分析手法を最短で習得したい読者に役立つ一冊である。"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="880" ind1="0" ind2="7"><subfield code="6">650-05/$1</subfield><subfield code="a">機械学習.</subfield><subfield code="2">jlabsh/4</subfield></datafield><datafield tag="880" ind1="1" ind2=" "><subfield code="6">700-06/$1</subfield><subfield code="a">宮岡悦良,</subfield><subfield code="e">translator.</subfield></datafield><datafield tag="880" ind1=" " ind2="0"><subfield code="6">830-07/$1</subfield><subfield code="a">世界標準MIT教科書.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3365775</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1347378768 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:30:38Z |
institution | BVB |
isbn | 9784764972902 4764972905 |
language | Japanese English |
oclc_num | 1347378768 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 454 pages). : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Kindai Kagakusha, |
record_format | marc |
series | Sekai hyōjun MIT kyōkasho. |
series2 | Sekai hyōjun MIT kyōkasho |
spelling | Kelleher, John D., 1974- author. https://id.oclc.org/worldcat/entity/E39PBJkTbwcmCvMvcxQJmydxXd http://id.loc.gov/authorities/names/n2014074189 Fundamentals of machine learning for predictive data analytics. Japanese 880-01 Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies 880-02 Shohan. 880-03 Tōkyō-to Shinjuku-ku : Kindai Kagakusha, 2022. 1 online resource (xvi, 454 pages). : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier 880-04 Sekai hyōjun MIT kyōkasho Online resource; title from PDF title page (EBSCO, viewed October 17, 2022). Includes bibliographical references (pages 438-447) and index. "Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals"--Provided by publisher. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Prediction theory. http://id.loc.gov/authorities/subjects/sh85106258 Apprentissage automatique. Exploration de données (Informatique) Théorie de la prévision. Data mining fast Machine learning fast Prediction theory fast 880-05 Kikai gakushū. jlabsh/4 Mac Namee, Brian, author. D'Arcy, Aoife, 1978- author. https://id.oclc.org/worldcat/entity/E39PCjxMytRFtfcDBxJXmJMqXq http://id.loc.gov/authorities/names/n2014074193 880-06 Miyaoka, Etsuo, translator. 880-07 Sekai hyōjun MIT kyōkasho. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3365775 Volltext 245-01/$1 データアナリティクスのための機械学習入門 : アルゴリズム・実例・ケーススタディ / 著J.D. ケラハー, B. マクナミー, A. ダーシー ; 訳宮岡悦良, 下川朝有, 黒沢匠雅 = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. 250-02/$1 初版. 264-03/$1 東京都新宿区 : 近代科学社, 2022. 490-04/$1 世界標準MIT教科書 520-00/$1 "本書は機械学習を実際のビジネスシーンに適用してデータ分析を行うための実践書である。機械学習そのものの解説というよりは、データ分析に不可欠な機械学習の手法を駆使してビジネスを予測的に改善する手法を解説していく。具体的な適用事例を用いて説明がなされるため、読者は目的やケースに合った手法(アルゴリズム)や実際の適用方法などを効率的に身に付けることができる。原著はMITで使われている教科書であり、講義の目的に応じて章を選択可能。ビジネスで使えるデータ分析手法を最短で習得したい読者に役立つ一冊である。"-- Provided by publisher. 650-05/$1 機械学習. jlabsh/4 700-06/$1 宮岡悦良, translator. 830-07/$1 世界標準MIT教科書. |
spellingShingle | Kelleher, John D., 1974- Mac Namee, Brian D'Arcy, Aoife, 1978- Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / Sekai hyōjun MIT kyōkasho. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Prediction theory. http://id.loc.gov/authorities/subjects/sh85106258 Apprentissage automatique. Exploration de données (Informatique) Théorie de la prévision. Data mining fast Machine learning fast Prediction theory fast 880-05 Kikai gakushū. jlabsh/4 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh85106258 |
title | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / |
title_alt | Fundamentals of machine learning for predictive data analytics. Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies |
title_auth | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / |
title_exact_search | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / |
title_full | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. |
title_fullStr | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. |
title_full_unstemmed | Dēta anaritikusu no tame no kikai gakushū nyūmon : arugorizumu, jitsurei, kēsu sutadi / cho J.D. Kerahā, B. Makunamī, A. Dāshī ; yaku Miyaoka Etsuo, Shimokawa Asanao, Kurosawa Takuma = Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / J.D. Kelleher, B. Mac Namee, A. D'Arcy. |
title_short | Dēta anaritikusu no tame no kikai gakushū nyūmon : |
title_sort | deta anaritikusu no tame no kikai gakushu nyumon arugorizumu jitsurei kesu sutadi |
title_sub | arugorizumu, jitsurei, kēsu sutadi / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Prediction theory. http://id.loc.gov/authorities/subjects/sh85106258 Apprentissage automatique. Exploration de données (Informatique) Théorie de la prévision. Data mining fast Machine learning fast Prediction theory fast 880-05 Kikai gakushū. jlabsh/4 |
topic_facet | Machine learning. Data mining. Prediction theory. Apprentissage automatique. Exploration de données (Informatique) Théorie de la prévision. Data mining Machine learning Prediction theory Kikai gakushū. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3365775 |
work_keys_str_mv | AT kelleherjohnd fundamentalsofmachinelearningforpredictivedataanalytics AT macnameebrian fundamentalsofmachinelearningforpredictivedataanalytics AT darcyaoife fundamentalsofmachinelearningforpredictivedataanalytics AT miyaokaetsuo fundamentalsofmachinelearningforpredictivedataanalytics AT kelleherjohnd detaanaritikusunotamenokikaigakushunyumonarugorizumujitsureikesusutadi AT macnameebrian detaanaritikusunotamenokikaigakushunyumonarugorizumujitsureikesusutadi AT darcyaoife detaanaritikusunotamenokikaigakushunyumonarugorizumujitsureikesusutadi AT miyaokaetsuo detaanaritikusunotamenokikaigakushunyumonarugorizumujitsureikesusutadi AT kelleherjohnd fundamentalsofmachinelearningforpredictivedataanalyticsalgorithmsworkedexamplesandcasestudies AT macnameebrian fundamentalsofmachinelearningforpredictivedataanalyticsalgorithmsworkedexamplesandcasestudies AT darcyaoife fundamentalsofmachinelearningforpredictivedataanalyticsalgorithmsworkedexamplesandcasestudies AT miyaokaetsuo fundamentalsofmachinelearningforpredictivedataanalyticsalgorithmsworkedexamplesandcasestudies |