Mechanical Vibration: Theory and Application.
The Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the t...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Chicago :
Rutgers University Press,
2022.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the theory of vibration, as well as discussions and examples of the applications of these principles to practical engineering problems. The book also addresses the effects of uncertainties in vibration analysis and design and develops passive and active methods for the control of vibration. Many example problems with solutions are provided. These examples as well as compelling case studies and stories of real-world applications of mechanical vibration have been carefully chosen and presented to help the reader gain a thorough understanding of the subject. There is a solutions manual for instructors who adopt this book. Request a solutions manual here (https://www.rutgersuniversitypress.org/mechanical-vibration). |
Beschreibung: | Description based upon print version of record. 4.6 Notions of Randomness |
Beschreibung: | 1 online resource (615 p.) |
ISBN: | 1978831080 9781978831087 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1341444985 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 221015s2022 ilu o ||| 0 eng d | ||
040 | |a EBLCP |b eng |c EBLCP |d AUD |d EBLCP |d OCLCQ |d N$T |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ | ||
019 | |a 1368218770 | ||
020 | |a 1978831080 | ||
020 | |a 9781978831087 |q (electronic bk.) | ||
035 | |a (OCoLC)1341444985 |z (OCoLC)1368218770 | ||
050 | 4 | |a QA935 | |
082 | 7 | |a 620.3 | |
049 | |a MAIN | ||
100 | 1 | |a Benaroya, Haym. | |
245 | 1 | 0 | |a Mechanical Vibration |h [electronic resource] : |b Theory and Application. |
260 | |a Chicago : |b Rutgers University Press, |c 2022. | ||
300 | |a 1 online resource (615 p.) | ||
500 | |a Description based upon print version of record. | ||
505 | 0 | |a Cover -- Title -- Copyright -- Preface -- Acknowledgments -- Dedication -- Contents -- Chapter 1: Introduction and Background -- 1.1 Challenges and Examples -- 1.2 Systems and Structures -- 1.3 Basic Concepts of Vibration -- 1.3.1 Modeling for Vibration -- 1.3.2 Idealization and Formulation -- 1.3.3 Inertia, Stiffness, and Damping -- 1.3.4 Properties of Keyboard Keys -- 1.3.5 Computational Aspects -- 1.3.6 Is Vibration Good or Bad? -- 1.3.7 Vibration Control -- 1.4 Types of Vibration -- 1.4.1 Motion Classification -- 1.4.2 Deterministic Approximations -- 1.4.3 Probability | |
505 | 8 | |a 1.4.4 System Model Uncertainty -- 1.4.5 Random Vibration -- 1.5 Types of System Models -- 1.5.1 Linear Approximation -- 1.5.2 Dimensionality -- 1.5.3 Discrete Models -- 1.5.4 Continuous Models -- 1.5.5 Nonlinear Models -- 1.6 Basic Dynamics -- 1.6.1 Statics and Equilibrium -- 1.6.2 The Equations of Motion -- 1.6.3 Linear Momentum and Impulse -- 1.6.4 Principles of Work and Energy -- 1.7 Units -- 1.7.1 Mars Orbiter Loss -- 1.7.2 U.S. Customary and SI Systems -- 1.7.3 The Second -- 1.7.4 Dimensional Analysis -- 1.8 Concepts Summary -- 1.9 Some Sound & Vibration Facts -- 1.10 Quotes | |
505 | 8 | |a Chapter 2: Single Degree-of-Freedom Undamped Vibration -- 2.1 Motivating Examples -- 2.1.1 Transport of a Satellite -- 2.1.2 Rocket Propulsion -- 2.2 Deterministic Modeling -- 2.2.1 Problem Idealization -- 2.2.2 Mass, Damping, and Stiffness -- 2.2.3 Deterministic Approximation -- 2.2.4 Equations of Motion -- 2.2.5 Energy Formulation -- 2.2.6 Representing Harmonic Motion -- 2.2.7 Solving the Equations of Motion -- 2.3 Undamped Free Vibration -- 2.3.1 Alternate Formulation -- 2.3.2 Phase Plane -- 2.4 Harmonically Forced Vibration -- 2.4.1 A Note on Terminology -- 2.4.2 Resonance | |
505 | 8 | |a 2.4.3 Vibration of a Structure in Water -- 2.5 Concepts Summary -- 2.6 Quotes -- 2.7 Problems -- Chapter 3: Single Degree-of-Freedom Damped Vibration -- 3.1 Overview -- 3.2 Introduction to Damping -- 3.3 Damping Models -- 3.3.1 Viscous Damping -- 3.3.2 Coulomb Damping -- 3.4 Free Vibration with Viscous Damping -- 3.4.1 Critically Damped and Overdamped Systems -- 3.4.2 Underdamped Systems -- 3.4.3 Logarithmic Decrement -- 3.4.4 Time Constants -- 3.4.5 Phase Plane -- 3.5 Free Vibration with Coulomb Damping -- 3.6 Forced Vibration with Viscous Damping -- 3.7 Forced Harmonic Vibration | |
505 | 8 | |a 3.7.1 Response to Harmonic Excitation -- 3.7.2 Harmonic Excitation in Complex Notation -- 3.7.3 Harmonic Base Excitation -- 3.7.4 Rotating Unbalance -- 3.8 Forced Periodic Vibration -- 3.8.1 Harmonic/Spectral Analysis -- 3.8.2 Fourier Series -- 3.9 Damping Loss Factor -- 3.10 Concepts Summary -- 3.11 Quotes -- 3.12 Problems -- Chapter 4: Single DOF Vibration: General Loading and Advanced Topics -- 4.1 Arbitrary Loading: Laplace Transform -- 4.2 Step Loading -- 4.3 Impulsive Loading -- 4.4 Arbitrary Loading: Convolution Integral -- 4.5 Introduction to Lagrange's Equation | |
500 | |a 4.6 Notions of Randomness | ||
520 | |a The Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the theory of vibration, as well as discussions and examples of the applications of these principles to practical engineering problems. The book also addresses the effects of uncertainties in vibration analysis and design and develops passive and active methods for the control of vibration. Many example problems with solutions are provided. These examples as well as compelling case studies and stories of real-world applications of mechanical vibration have been carefully chosen and presented to help the reader gain a thorough understanding of the subject. There is a solutions manual for instructors who adopt this book. Request a solutions manual here (https://www.rutgersuniversitypress.org/mechanical-vibration). | ||
650 | 0 | |a Vibration. |0 http://id.loc.gov/authorities/subjects/sh85143117 | |
650 | 6 | |a Vibration. | |
650 | 7 | |a vibration (physical) |2 aat | |
650 | 7 | |a Vibration |2 fast | |
700 | 1 | |a Nagurka, Mark. | |
700 | 1 | |a Han, Seon Mi. | |
758 | |i has work: |a MECHANICAL VIBRATION (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3gJm7fCdmWrxxx6cdJcmq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Benaroya, Haym |t Mechanical Vibration |d Chicago : Rutgers University Press,c2022 |z 9781978831063 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3177310 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL29408692 | ||
938 | |a De Gruyter |b DEGR |n 9781978831087 | ||
938 | |a EBSCOhost |b EBSC |n 3177310 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1341444985 |
---|---|
_version_ | 1816882563964207104 |
adam_text | |
any_adam_object | |
author | Benaroya, Haym |
author2 | Nagurka, Mark Han, Seon Mi |
author2_role | |
author2_variant | m n mn s m h sm smh |
author_facet | Benaroya, Haym Nagurka, Mark Han, Seon Mi |
author_role | |
author_sort | Benaroya, Haym |
author_variant | h b hb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA935 |
callnumber-raw | QA935 |
callnumber-search | QA935 |
callnumber-sort | QA 3935 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Title -- Copyright -- Preface -- Acknowledgments -- Dedication -- Contents -- Chapter 1: Introduction and Background -- 1.1 Challenges and Examples -- 1.2 Systems and Structures -- 1.3 Basic Concepts of Vibration -- 1.3.1 Modeling for Vibration -- 1.3.2 Idealization and Formulation -- 1.3.3 Inertia, Stiffness, and Damping -- 1.3.4 Properties of Keyboard Keys -- 1.3.5 Computational Aspects -- 1.3.6 Is Vibration Good or Bad? -- 1.3.7 Vibration Control -- 1.4 Types of Vibration -- 1.4.1 Motion Classification -- 1.4.2 Deterministic Approximations -- 1.4.3 Probability 1.4.4 System Model Uncertainty -- 1.4.5 Random Vibration -- 1.5 Types of System Models -- 1.5.1 Linear Approximation -- 1.5.2 Dimensionality -- 1.5.3 Discrete Models -- 1.5.4 Continuous Models -- 1.5.5 Nonlinear Models -- 1.6 Basic Dynamics -- 1.6.1 Statics and Equilibrium -- 1.6.2 The Equations of Motion -- 1.6.3 Linear Momentum and Impulse -- 1.6.4 Principles of Work and Energy -- 1.7 Units -- 1.7.1 Mars Orbiter Loss -- 1.7.2 U.S. Customary and SI Systems -- 1.7.3 The Second -- 1.7.4 Dimensional Analysis -- 1.8 Concepts Summary -- 1.9 Some Sound & Vibration Facts -- 1.10 Quotes Chapter 2: Single Degree-of-Freedom Undamped Vibration -- 2.1 Motivating Examples -- 2.1.1 Transport of a Satellite -- 2.1.2 Rocket Propulsion -- 2.2 Deterministic Modeling -- 2.2.1 Problem Idealization -- 2.2.2 Mass, Damping, and Stiffness -- 2.2.3 Deterministic Approximation -- 2.2.4 Equations of Motion -- 2.2.5 Energy Formulation -- 2.2.6 Representing Harmonic Motion -- 2.2.7 Solving the Equations of Motion -- 2.3 Undamped Free Vibration -- 2.3.1 Alternate Formulation -- 2.3.2 Phase Plane -- 2.4 Harmonically Forced Vibration -- 2.4.1 A Note on Terminology -- 2.4.2 Resonance 2.4.3 Vibration of a Structure in Water -- 2.5 Concepts Summary -- 2.6 Quotes -- 2.7 Problems -- Chapter 3: Single Degree-of-Freedom Damped Vibration -- 3.1 Overview -- 3.2 Introduction to Damping -- 3.3 Damping Models -- 3.3.1 Viscous Damping -- 3.3.2 Coulomb Damping -- 3.4 Free Vibration with Viscous Damping -- 3.4.1 Critically Damped and Overdamped Systems -- 3.4.2 Underdamped Systems -- 3.4.3 Logarithmic Decrement -- 3.4.4 Time Constants -- 3.4.5 Phase Plane -- 3.5 Free Vibration with Coulomb Damping -- 3.6 Forced Vibration with Viscous Damping -- 3.7 Forced Harmonic Vibration 3.7.1 Response to Harmonic Excitation -- 3.7.2 Harmonic Excitation in Complex Notation -- 3.7.3 Harmonic Base Excitation -- 3.7.4 Rotating Unbalance -- 3.8 Forced Periodic Vibration -- 3.8.1 Harmonic/Spectral Analysis -- 3.8.2 Fourier Series -- 3.9 Damping Loss Factor -- 3.10 Concepts Summary -- 3.11 Quotes -- 3.12 Problems -- Chapter 4: Single DOF Vibration: General Loading and Advanced Topics -- 4.1 Arbitrary Loading: Laplace Transform -- 4.2 Step Loading -- 4.3 Impulsive Loading -- 4.4 Arbitrary Loading: Convolution Integral -- 4.5 Introduction to Lagrange's Equation |
ctrlnum | (OCoLC)1341444985 |
dewey-full | 620.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.3 |
dewey-search | 620.3 |
dewey-sort | 3620.3 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05689cam a2200493Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-on1341444985</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">221015s2022 ilu o ||| 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="c">EBLCP</subfield><subfield code="d">AUD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1368218770</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1978831080</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781978831087</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1341444985</subfield><subfield code="z">(OCoLC)1368218770</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA935</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.3</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benaroya, Haym.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical Vibration</subfield><subfield code="h">[electronic resource] :</subfield><subfield code="b">Theory and Application.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Chicago :</subfield><subfield code="b">Rutgers University Press,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (615 p.)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- Preface -- Acknowledgments -- Dedication -- Contents -- Chapter 1: Introduction and Background -- 1.1 Challenges and Examples -- 1.2 Systems and Structures -- 1.3 Basic Concepts of Vibration -- 1.3.1 Modeling for Vibration -- 1.3.2 Idealization and Formulation -- 1.3.3 Inertia, Stiffness, and Damping -- 1.3.4 Properties of Keyboard Keys -- 1.3.5 Computational Aspects -- 1.3.6 Is Vibration Good or Bad? -- 1.3.7 Vibration Control -- 1.4 Types of Vibration -- 1.4.1 Motion Classification -- 1.4.2 Deterministic Approximations -- 1.4.3 Probability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4.4 System Model Uncertainty -- 1.4.5 Random Vibration -- 1.5 Types of System Models -- 1.5.1 Linear Approximation -- 1.5.2 Dimensionality -- 1.5.3 Discrete Models -- 1.5.4 Continuous Models -- 1.5.5 Nonlinear Models -- 1.6 Basic Dynamics -- 1.6.1 Statics and Equilibrium -- 1.6.2 The Equations of Motion -- 1.6.3 Linear Momentum and Impulse -- 1.6.4 Principles of Work and Energy -- 1.7 Units -- 1.7.1 Mars Orbiter Loss -- 1.7.2 U.S. Customary and SI Systems -- 1.7.3 The Second -- 1.7.4 Dimensional Analysis -- 1.8 Concepts Summary -- 1.9 Some Sound & Vibration Facts -- 1.10 Quotes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2: Single Degree-of-Freedom Undamped Vibration -- 2.1 Motivating Examples -- 2.1.1 Transport of a Satellite -- 2.1.2 Rocket Propulsion -- 2.2 Deterministic Modeling -- 2.2.1 Problem Idealization -- 2.2.2 Mass, Damping, and Stiffness -- 2.2.3 Deterministic Approximation -- 2.2.4 Equations of Motion -- 2.2.5 Energy Formulation -- 2.2.6 Representing Harmonic Motion -- 2.2.7 Solving the Equations of Motion -- 2.3 Undamped Free Vibration -- 2.3.1 Alternate Formulation -- 2.3.2 Phase Plane -- 2.4 Harmonically Forced Vibration -- 2.4.1 A Note on Terminology -- 2.4.2 Resonance</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.3 Vibration of a Structure in Water -- 2.5 Concepts Summary -- 2.6 Quotes -- 2.7 Problems -- Chapter 3: Single Degree-of-Freedom Damped Vibration -- 3.1 Overview -- 3.2 Introduction to Damping -- 3.3 Damping Models -- 3.3.1 Viscous Damping -- 3.3.2 Coulomb Damping -- 3.4 Free Vibration with Viscous Damping -- 3.4.1 Critically Damped and Overdamped Systems -- 3.4.2 Underdamped Systems -- 3.4.3 Logarithmic Decrement -- 3.4.4 Time Constants -- 3.4.5 Phase Plane -- 3.5 Free Vibration with Coulomb Damping -- 3.6 Forced Vibration with Viscous Damping -- 3.7 Forced Harmonic Vibration</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7.1 Response to Harmonic Excitation -- 3.7.2 Harmonic Excitation in Complex Notation -- 3.7.3 Harmonic Base Excitation -- 3.7.4 Rotating Unbalance -- 3.8 Forced Periodic Vibration -- 3.8.1 Harmonic/Spectral Analysis -- 3.8.2 Fourier Series -- 3.9 Damping Loss Factor -- 3.10 Concepts Summary -- 3.11 Quotes -- 3.12 Problems -- Chapter 4: Single DOF Vibration: General Loading and Advanced Topics -- 4.1 Arbitrary Loading: Laplace Transform -- 4.2 Step Loading -- 4.3 Impulsive Loading -- 4.4 Arbitrary Loading: Convolution Integral -- 4.5 Introduction to Lagrange's Equation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.6 Notions of Randomness</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the theory of vibration, as well as discussions and examples of the applications of these principles to practical engineering problems. The book also addresses the effects of uncertainties in vibration analysis and design and develops passive and active methods for the control of vibration. Many example problems with solutions are provided. These examples as well as compelling case studies and stories of real-world applications of mechanical vibration have been carefully chosen and presented to help the reader gain a thorough understanding of the subject. There is a solutions manual for instructors who adopt this book. Request a solutions manual here (https://www.rutgersuniversitypress.org/mechanical-vibration).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vibration.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85143117</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Vibration.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">vibration (physical)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vibration</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagurka, Mark.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Seon Mi.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">MECHANICAL VIBRATION (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD3gJm7fCdmWrxxx6cdJcmq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Benaroya, Haym</subfield><subfield code="t">Mechanical Vibration</subfield><subfield code="d">Chicago : Rutgers University Press,c2022</subfield><subfield code="z">9781978831063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3177310</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL29408692</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781978831087</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3177310</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1341444985 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:37Z |
institution | BVB |
isbn | 1978831080 9781978831087 |
language | English |
oclc_num | 1341444985 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (615 p.) |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Rutgers University Press, |
record_format | marc |
spelling | Benaroya, Haym. Mechanical Vibration [electronic resource] : Theory and Application. Chicago : Rutgers University Press, 2022. 1 online resource (615 p.) Description based upon print version of record. Cover -- Title -- Copyright -- Preface -- Acknowledgments -- Dedication -- Contents -- Chapter 1: Introduction and Background -- 1.1 Challenges and Examples -- 1.2 Systems and Structures -- 1.3 Basic Concepts of Vibration -- 1.3.1 Modeling for Vibration -- 1.3.2 Idealization and Formulation -- 1.3.3 Inertia, Stiffness, and Damping -- 1.3.4 Properties of Keyboard Keys -- 1.3.5 Computational Aspects -- 1.3.6 Is Vibration Good or Bad? -- 1.3.7 Vibration Control -- 1.4 Types of Vibration -- 1.4.1 Motion Classification -- 1.4.2 Deterministic Approximations -- 1.4.3 Probability 1.4.4 System Model Uncertainty -- 1.4.5 Random Vibration -- 1.5 Types of System Models -- 1.5.1 Linear Approximation -- 1.5.2 Dimensionality -- 1.5.3 Discrete Models -- 1.5.4 Continuous Models -- 1.5.5 Nonlinear Models -- 1.6 Basic Dynamics -- 1.6.1 Statics and Equilibrium -- 1.6.2 The Equations of Motion -- 1.6.3 Linear Momentum and Impulse -- 1.6.4 Principles of Work and Energy -- 1.7 Units -- 1.7.1 Mars Orbiter Loss -- 1.7.2 U.S. Customary and SI Systems -- 1.7.3 The Second -- 1.7.4 Dimensional Analysis -- 1.8 Concepts Summary -- 1.9 Some Sound & Vibration Facts -- 1.10 Quotes Chapter 2: Single Degree-of-Freedom Undamped Vibration -- 2.1 Motivating Examples -- 2.1.1 Transport of a Satellite -- 2.1.2 Rocket Propulsion -- 2.2 Deterministic Modeling -- 2.2.1 Problem Idealization -- 2.2.2 Mass, Damping, and Stiffness -- 2.2.3 Deterministic Approximation -- 2.2.4 Equations of Motion -- 2.2.5 Energy Formulation -- 2.2.6 Representing Harmonic Motion -- 2.2.7 Solving the Equations of Motion -- 2.3 Undamped Free Vibration -- 2.3.1 Alternate Formulation -- 2.3.2 Phase Plane -- 2.4 Harmonically Forced Vibration -- 2.4.1 A Note on Terminology -- 2.4.2 Resonance 2.4.3 Vibration of a Structure in Water -- 2.5 Concepts Summary -- 2.6 Quotes -- 2.7 Problems -- Chapter 3: Single Degree-of-Freedom Damped Vibration -- 3.1 Overview -- 3.2 Introduction to Damping -- 3.3 Damping Models -- 3.3.1 Viscous Damping -- 3.3.2 Coulomb Damping -- 3.4 Free Vibration with Viscous Damping -- 3.4.1 Critically Damped and Overdamped Systems -- 3.4.2 Underdamped Systems -- 3.4.3 Logarithmic Decrement -- 3.4.4 Time Constants -- 3.4.5 Phase Plane -- 3.5 Free Vibration with Coulomb Damping -- 3.6 Forced Vibration with Viscous Damping -- 3.7 Forced Harmonic Vibration 3.7.1 Response to Harmonic Excitation -- 3.7.2 Harmonic Excitation in Complex Notation -- 3.7.3 Harmonic Base Excitation -- 3.7.4 Rotating Unbalance -- 3.8 Forced Periodic Vibration -- 3.8.1 Harmonic/Spectral Analysis -- 3.8.2 Fourier Series -- 3.9 Damping Loss Factor -- 3.10 Concepts Summary -- 3.11 Quotes -- 3.12 Problems -- Chapter 4: Single DOF Vibration: General Loading and Advanced Topics -- 4.1 Arbitrary Loading: Laplace Transform -- 4.2 Step Loading -- 4.3 Impulsive Loading -- 4.4 Arbitrary Loading: Convolution Integral -- 4.5 Introduction to Lagrange's Equation 4.6 Notions of Randomness The Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the theory of vibration, as well as discussions and examples of the applications of these principles to practical engineering problems. The book also addresses the effects of uncertainties in vibration analysis and design and develops passive and active methods for the control of vibration. Many example problems with solutions are provided. These examples as well as compelling case studies and stories of real-world applications of mechanical vibration have been carefully chosen and presented to help the reader gain a thorough understanding of the subject. There is a solutions manual for instructors who adopt this book. Request a solutions manual here (https://www.rutgersuniversitypress.org/mechanical-vibration). Vibration. http://id.loc.gov/authorities/subjects/sh85143117 Vibration. vibration (physical) aat Vibration fast Nagurka, Mark. Han, Seon Mi. has work: MECHANICAL VIBRATION (Text) https://id.oclc.org/worldcat/entity/E39PD3gJm7fCdmWrxxx6cdJcmq https://id.oclc.org/worldcat/ontology/hasWork Print version: Benaroya, Haym Mechanical Vibration Chicago : Rutgers University Press,c2022 9781978831063 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3177310 Volltext |
spellingShingle | Benaroya, Haym Mechanical Vibration Theory and Application. Cover -- Title -- Copyright -- Preface -- Acknowledgments -- Dedication -- Contents -- Chapter 1: Introduction and Background -- 1.1 Challenges and Examples -- 1.2 Systems and Structures -- 1.3 Basic Concepts of Vibration -- 1.3.1 Modeling for Vibration -- 1.3.2 Idealization and Formulation -- 1.3.3 Inertia, Stiffness, and Damping -- 1.3.4 Properties of Keyboard Keys -- 1.3.5 Computational Aspects -- 1.3.6 Is Vibration Good or Bad? -- 1.3.7 Vibration Control -- 1.4 Types of Vibration -- 1.4.1 Motion Classification -- 1.4.2 Deterministic Approximations -- 1.4.3 Probability 1.4.4 System Model Uncertainty -- 1.4.5 Random Vibration -- 1.5 Types of System Models -- 1.5.1 Linear Approximation -- 1.5.2 Dimensionality -- 1.5.3 Discrete Models -- 1.5.4 Continuous Models -- 1.5.5 Nonlinear Models -- 1.6 Basic Dynamics -- 1.6.1 Statics and Equilibrium -- 1.6.2 The Equations of Motion -- 1.6.3 Linear Momentum and Impulse -- 1.6.4 Principles of Work and Energy -- 1.7 Units -- 1.7.1 Mars Orbiter Loss -- 1.7.2 U.S. Customary and SI Systems -- 1.7.3 The Second -- 1.7.4 Dimensional Analysis -- 1.8 Concepts Summary -- 1.9 Some Sound & Vibration Facts -- 1.10 Quotes Chapter 2: Single Degree-of-Freedom Undamped Vibration -- 2.1 Motivating Examples -- 2.1.1 Transport of a Satellite -- 2.1.2 Rocket Propulsion -- 2.2 Deterministic Modeling -- 2.2.1 Problem Idealization -- 2.2.2 Mass, Damping, and Stiffness -- 2.2.3 Deterministic Approximation -- 2.2.4 Equations of Motion -- 2.2.5 Energy Formulation -- 2.2.6 Representing Harmonic Motion -- 2.2.7 Solving the Equations of Motion -- 2.3 Undamped Free Vibration -- 2.3.1 Alternate Formulation -- 2.3.2 Phase Plane -- 2.4 Harmonically Forced Vibration -- 2.4.1 A Note on Terminology -- 2.4.2 Resonance 2.4.3 Vibration of a Structure in Water -- 2.5 Concepts Summary -- 2.6 Quotes -- 2.7 Problems -- Chapter 3: Single Degree-of-Freedom Damped Vibration -- 3.1 Overview -- 3.2 Introduction to Damping -- 3.3 Damping Models -- 3.3.1 Viscous Damping -- 3.3.2 Coulomb Damping -- 3.4 Free Vibration with Viscous Damping -- 3.4.1 Critically Damped and Overdamped Systems -- 3.4.2 Underdamped Systems -- 3.4.3 Logarithmic Decrement -- 3.4.4 Time Constants -- 3.4.5 Phase Plane -- 3.5 Free Vibration with Coulomb Damping -- 3.6 Forced Vibration with Viscous Damping -- 3.7 Forced Harmonic Vibration 3.7.1 Response to Harmonic Excitation -- 3.7.2 Harmonic Excitation in Complex Notation -- 3.7.3 Harmonic Base Excitation -- 3.7.4 Rotating Unbalance -- 3.8 Forced Periodic Vibration -- 3.8.1 Harmonic/Spectral Analysis -- 3.8.2 Fourier Series -- 3.9 Damping Loss Factor -- 3.10 Concepts Summary -- 3.11 Quotes -- 3.12 Problems -- Chapter 4: Single DOF Vibration: General Loading and Advanced Topics -- 4.1 Arbitrary Loading: Laplace Transform -- 4.2 Step Loading -- 4.3 Impulsive Loading -- 4.4 Arbitrary Loading: Convolution Integral -- 4.5 Introduction to Lagrange's Equation Vibration. http://id.loc.gov/authorities/subjects/sh85143117 Vibration. vibration (physical) aat Vibration fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85143117 |
title | Mechanical Vibration Theory and Application. |
title_auth | Mechanical Vibration Theory and Application. |
title_exact_search | Mechanical Vibration Theory and Application. |
title_full | Mechanical Vibration [electronic resource] : Theory and Application. |
title_fullStr | Mechanical Vibration [electronic resource] : Theory and Application. |
title_full_unstemmed | Mechanical Vibration [electronic resource] : Theory and Application. |
title_short | Mechanical Vibration |
title_sort | mechanical vibration theory and application |
title_sub | Theory and Application. |
topic | Vibration. http://id.loc.gov/authorities/subjects/sh85143117 Vibration. vibration (physical) aat Vibration fast |
topic_facet | Vibration. vibration (physical) Vibration |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3177310 |
work_keys_str_mv | AT benaroyahaym mechanicalvibrationtheoryandapplication AT nagurkamark mechanicalvibrationtheoryandapplication AT hanseonmi mechanicalvibrationtheoryandapplication |