Machine learning algorithms for engineering applications :: future trends and research directions /
"Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organizations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers, Inc.,
[2022]
|
Schriftenreihe: | Advances in data science and computing technologies
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organizations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of this book is to provide an intellectual introduction to statistical or machine learning (ML) techniques for those that would not normally be exposed to such approaches during their typical required statistical exercise. Statistical analysis is an integral part of machine learning and can be described as a form of it, often even utilizing well-known and familiar techniques, that has a different focus than traditional analytical practice in applied disciplines. The key notion is that flexible, automatic approaches are used to detect patterns within the data, with a primary focus on making predictions on future data"-- |
Beschreibung: | 1 online resource (xiv, 214 pages) : illustrations (chiefly color), color map. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9798886970869 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1331705982 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 220623s2022 nyuab ob 001 0 eng | ||
010 | |a 2022028068 | ||
040 | |a DLC |b eng |e rda |c DLC |d YDX |d OCLCF |d N$T |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
020 | |a 9798886970869 |q (electronic bk.) | ||
020 | |z 9781685074494 |q hardcover | ||
035 | |a (OCoLC)1331705982 | ||
050 | 0 | 4 | |a TA347.A78 |b M33 2022 |
082 | 7 | |a 620.00285/63 |2 23/eng/20220818 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Machine learning algorithms for engineering applications : |b future trends and research directions / |c Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors. |
264 | 1 | |a New York : |b Nova Science Publishers, Inc., |c [2022] | |
300 | |a 1 online resource (xiv, 214 pages) : |b illustrations (chiefly color), color map. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in data science and computing technologies | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organizations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of this book is to provide an intellectual introduction to statistical or machine learning (ML) techniques for those that would not normally be exposed to such approaches during their typical required statistical exercise. Statistical analysis is an integral part of machine learning and can be described as a form of it, often even utilizing well-known and familiar techniques, that has a different focus than traditional analytical practice in applied disciplines. The key notion is that flexible, automatic approaches are used to detect patterns within the data, with a primary focus on making predictions on future data"-- |c Provided by publisher. | ||
588 | |a Description based on online resource; title from digital title page (viewed on August 22, 2022). | ||
650 | 0 | |a Engineering |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh85043180 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Ingénierie |x Informatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Engineering |x Data processing |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
700 | 1 | |a Chatterjee, Prasenjit, |d 1982- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJj4tfp3rWW4WkWdFr4H4q |0 http://id.loc.gov/authorities/names/n2018066742 | |
700 | 1 | |a Astya, Parmanand, |e editor. | |
700 | 1 | |a Chakraborty, Sudeshna, |e editor. | |
700 | 1 | |a Pooja, |e editor. | |
776 | 0 | 8 | |i Print version: |t Machine learning algorithms for engineering applications |d New York : Nova Science Publishers, [2022] |z 9781685074494 |w (DLC) 2022028067 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3308318 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 302980356 | ||
938 | |a EBSCOhost |b EBSC |n 3308318 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1331705982 |
---|---|
_version_ | 1816882562135490560 |
adam_text | |
any_adam_object | |
author2 | Chatterjee, Prasenjit, 1982- Astya, Parmanand Chakraborty, Sudeshna Pooja |
author2_role | edt edt edt edt |
author2_variant | p c pc p a pa s c sc p |
author_GND | http://id.loc.gov/authorities/names/n2018066742 |
author_facet | Chatterjee, Prasenjit, 1982- Astya, Parmanand Chakraborty, Sudeshna Pooja |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA347 |
callnumber-raw | TA347.A78 M33 2022 |
callnumber-search | TA347.A78 M33 2022 |
callnumber-sort | TA 3347 A78 M33 42022 |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)1331705982 |
dewey-full | 620.00285/63 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.00285/63 |
dewey-search | 620.00285/63 |
dewey-sort | 3620.00285 263 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03501cam a2200541 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1331705982</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">220623s2022 nyuab ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2022028068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798886970869</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781685074494</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1331705982</subfield></datafield><datafield tag="050" ind1="0" ind2="4"><subfield code="a">TA347.A78</subfield><subfield code="b">M33 2022</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.00285/63</subfield><subfield code="2">23/eng/20220818</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Machine learning algorithms for engineering applications :</subfield><subfield code="b">future trends and research directions /</subfield><subfield code="c">Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 214 pages) :</subfield><subfield code="b">illustrations (chiefly color), color map.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in data science and computing technologies</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organizations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of this book is to provide an intellectual introduction to statistical or machine learning (ML) techniques for those that would not normally be exposed to such approaches during their typical required statistical exercise. Statistical analysis is an integral part of machine learning and can be described as a form of it, often even utilizing well-known and familiar techniques, that has a different focus than traditional analytical practice in applied disciplines. The key notion is that flexible, automatic approaches are used to detect patterns within the data, with a primary focus on making predictions on future data"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on August 22, 2022).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Engineering</subfield><subfield code="x">Data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85043180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ingénierie</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chatterjee, Prasenjit,</subfield><subfield code="d">1982-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJj4tfp3rWW4WkWdFr4H4q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018066742</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Astya, Parmanand,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Sudeshna,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pooja,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Machine learning algorithms for engineering applications</subfield><subfield code="d">New York : Nova Science Publishers, [2022]</subfield><subfield code="z">9781685074494</subfield><subfield code="w">(DLC) 2022028067</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3308318</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">302980356</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3308318</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1331705982 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:30:35Z |
institution | BVB |
isbn | 9798886970869 |
language | English |
lccn | 2022028068 |
oclc_num | 1331705982 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 214 pages) : illustrations (chiefly color), color map. |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
series2 | Advances in data science and computing technologies |
spelling | Machine learning algorithms for engineering applications : future trends and research directions / Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors. New York : Nova Science Publishers, Inc., [2022] 1 online resource (xiv, 214 pages) : illustrations (chiefly color), color map. text txt rdacontent computer c rdamedia online resource cr rdacarrier Advances in data science and computing technologies Includes bibliographical references and index. "Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organizations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of this book is to provide an intellectual introduction to statistical or machine learning (ML) techniques for those that would not normally be exposed to such approaches during their typical required statistical exercise. Statistical analysis is an integral part of machine learning and can be described as a form of it, often even utilizing well-known and familiar techniques, that has a different focus than traditional analytical practice in applied disciplines. The key notion is that flexible, automatic approaches are used to detect patterns within the data, with a primary focus on making predictions on future data"-- Provided by publisher. Description based on online resource; title from digital title page (viewed on August 22, 2022). Engineering Data processing. http://id.loc.gov/authorities/subjects/sh85043180 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Ingénierie Informatique. Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Artificial intelligence fast Engineering Data processing fast Machine learning fast Chatterjee, Prasenjit, 1982- editor. https://id.oclc.org/worldcat/entity/E39PBJj4tfp3rWW4WkWdFr4H4q http://id.loc.gov/authorities/names/n2018066742 Astya, Parmanand, editor. Chakraborty, Sudeshna, editor. Pooja, editor. Print version: Machine learning algorithms for engineering applications New York : Nova Science Publishers, [2022] 9781685074494 (DLC) 2022028067 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3308318 Volltext |
spellingShingle | Machine learning algorithms for engineering applications : future trends and research directions / Engineering Data processing. http://id.loc.gov/authorities/subjects/sh85043180 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Ingénierie Informatique. Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Artificial intelligence fast Engineering Data processing fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85043180 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85079324 |
title | Machine learning algorithms for engineering applications : future trends and research directions / |
title_auth | Machine learning algorithms for engineering applications : future trends and research directions / |
title_exact_search | Machine learning algorithms for engineering applications : future trends and research directions / |
title_full | Machine learning algorithms for engineering applications : future trends and research directions / Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors. |
title_fullStr | Machine learning algorithms for engineering applications : future trends and research directions / Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors. |
title_full_unstemmed | Machine learning algorithms for engineering applications : future trends and research directions / Prasenjit Chatterjee, Parmanand Astya, Sudeshna Chakraborty and Pooja, editors. |
title_short | Machine learning algorithms for engineering applications : |
title_sort | machine learning algorithms for engineering applications future trends and research directions |
title_sub | future trends and research directions / |
topic | Engineering Data processing. http://id.loc.gov/authorities/subjects/sh85043180 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Ingénierie Informatique. Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Artificial intelligence fast Engineering Data processing fast Machine learning fast |
topic_facet | Engineering Data processing. Artificial intelligence. Machine learning. Ingénierie Informatique. Intelligence artificielle. Apprentissage automatique. artificial intelligence. Artificial intelligence Engineering Data processing Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3308318 |
work_keys_str_mv | AT chatterjeeprasenjit machinelearningalgorithmsforengineeringapplicationsfuturetrendsandresearchdirections AT astyaparmanand machinelearningalgorithmsforengineeringapplicationsfuturetrendsandresearchdirections AT chakrabortysudeshna machinelearningalgorithmsforengineeringapplicationsfuturetrendsandresearchdirections AT pooja machinelearningalgorithmsforengineeringapplicationsfuturetrendsandresearchdirections |