Distributed machine learning with Python :: accelerating model training and serving with distributed systems /

Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wang, Guanhua
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham : Packt Publishing, Limited, 2022.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter server -- Defining the worker -- Passing data between the parameter server and worker -- Issues with the parameter server -- The parameter server architecture introduces a high coding complexity for practitioners -- All-Reduce architecture -- Reduce -- All-Reduce -- Ring All-Reduce.
Beschreibung:Pros and cons of pipeline parallelism.
Beschreibung:1 online resource (284 pages) : color illustrations
ISBN:1801817219
9781801817219

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen