THE TENSORFLOW WORKSHOP: a hands-on guide to building deep learning models from scratch using real-world datasets.
This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[S.l.] :
PACKT PUBLISHING LIMITED,
2021.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model. |
Beschreibung: | 1 online resource |
ISBN: | 9781800200227 1800200226 |
Internformat
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1289442521 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 211219s2021 xx o 0|| 0 eng d | ||
040 | |a YDX |b eng |c YDX |d UKMGB |d DST |d OCLCO |d OCLCF |d OCLCO |d N$T |d OCLCQ |d IEEEE |d OCLCO |d OCLCL |d OCLCQ |d EBLCP |d UKAHL |d OLDSC |d DEGRU | ||
015 | |a GBC193047 |2 bnb | ||
016 | 7 | |a 020220534 |2 Uk | |
019 | |a 1289479803 |a 1289535966 |a 1289608626 |a 1290024236 |a 1290484385 | ||
020 | |a 9781800200227 |q (electronic bk.) | ||
020 | |a 1800200226 |q (electronic bk.) | ||
020 | |z 1800205252 | ||
020 | |z 9781800205253 | ||
035 | |a (OCoLC)1289442521 |z (OCoLC)1289479803 |z (OCoLC)1289535966 |z (OCoLC)1289608626 |z (OCoLC)1290024236 |z (OCoLC)1290484385 | ||
037 | |a 9781800200227 |b Packt Publishing | ||
037 | |a 10163586 |b IEEE | ||
050 | 4 | |a Q325.5 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Moocarme, Matthew. | |
245 | 1 | 4 | |a THE TENSORFLOW WORKSHOP |h [electronic resource] : |b a hands-on guide to building deep learning models from scratch using real-world datasets. |
260 | |a [S.l.] : |b PACKT PUBLISHING LIMITED, |c 2021. | ||
300 | |a 1 online resource | ||
336 | |a text |2 rdacontent | ||
337 | |a computer |2 rdamedia | ||
338 | |a online resource |2 rdacarrier | ||
505 | 0 | |a Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning with TensorFlow -- Introduction -- Implementing Artificial Neural Networks in TensorFlow -- Advantages of TensorFlow -- Disadvantages of TensorFlow -- The TensorFlow Library in Python -- Exercise 1.01: Verifying Your Version of TensorFlow -- Introduction to Tensors -- Scalars, Vectors, Matrices, and Tensors -- Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow -- Tensor Addition -- Exercise 1.03: Performing Tensor Addition in TensorFlow -- Activity 1.01: Performing Tensor Addition in TensorFlow -- Reshaping -- Tensor Transposition -- Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow -- Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow -- Tensor Multiplication -- Exercise 1.05: Performing Tensor Multiplication in TensorFlow -- Optimization -- Forward Propagation -- Backpropagation -- Learning Optimal Parameters -- Optimizers in TensorFlow -- Activation functions -- Activity 1.03: Applying Activation Functions -- Summary -- Chapter 2: Loading and Processing Data -- Introduction -- Exploring Data Types -- Data Preprocessing -- Processing Tabular Data -- Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields -- Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler -- Exercise 2.02: Preprocessing Non-Numerical Data -- Processing Image Data -- Exercise 2.03: Loading Image Data for Batch Processing -- Image Augmentation -- Activity 2.02: Loading Image Data for Batch Processing -- Text Processing -- Exercise 2.04: Loading Text Data for TensorFlow Models -- Audio Processing -- Exercise 2.05: Loading Audio Data for TensorFlow Models -- Activity 2.03: Loading Audio Data for Batch Processing -- Summary. | |
505 | 8 | |a Chapter 3: TensorFlow Development -- Introduction -- TensorBoard -- Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication -- Activity 3.01: Using TensorBoard to Visualize Tensor Transformations -- Exercise 3.02: Using TensorBoard to Visualize Image Batches -- TensorFlow Hub -- Exercise 3.03: Downloading a Model from TensorFlow Hub -- Google Colab -- Advantages of Google Colab -- Disadvantages of Google Colab -- Development on Google Colab -- Exercise 3.04: Using Google Colab to Visualize Data -- Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub -- Summary -- Chapter 4: Regression and Classification Models -- Introduction -- Sequential Models -- Keras Layers -- Exercise 4.01: Creating an ANN with TensorFlow -- Model Fitting -- The Loss Function -- Model Evaluation -- Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow -- Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow -- Activity 4.01: Creating a Multi-Layer ANN with TensorFlow -- Classification Models -- Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow -- Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow -- Summary -- Chapter 5: Classification Models -- Introduction -- Binary Classification -- Logistic Regression -- Binary Cross-Entropy -- Binary Classification Architecture -- Exercise 5.01: Building a Logistic Regression Model -- Metrics for Classifiers -- Accuracy and Null Accuracy -- Precision, Recall, and the F1 Score -- Confusion Matrices -- Exercise 5.02: Classification Evaluation Metrics -- Multi-Class Classification -- The Softmax Function -- Categorical Cross-Entropy -- Multi-Class Classification Architecture -- Exercise 5.03: Building a Multi-Class Model -- Activity 5.01: Building a Character Recognition Model with TensorFlow -- Multi-Label Classification. | |
505 | 8 | |a Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow -- Summary -- Chapter 6: Regularization and Hyperparameter Tuning -- Introduction -- Regularization Techniques -- L1 Regularization -- L2 Regularization -- Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer -- Dropout Regularization -- Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout -- Early Stopping -- Activity 6.01: Predicting Income with L1 and L2 Regularizers -- Hyperparameter Tuning -- Keras Tuner -- Random Search -- Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner -- Hyperband -- Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner -- Bayesian Optimization -- Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner -- Summary -- Chapter 7: Convolutional Neural Networks -- Introduction -- CNNs -- Image Representation -- The Convolutional Layer -- Creating the Model -- Exercise 7.01: Creating the First Layer to Build a CNN -- Pooling Layer -- Max Pooling -- Average Pooling -- Exercise 7.02: Creating a Pooling Layer for a CNN -- Flattening Layer -- Exercise 7.03: Building a CNN -- Image Augmentation -- Batch Normalization -- Exercise 7.04: Building a CNN with Additional Convolutional Layers -- Binary Image Classification -- Object Classification -- Exercise 7.05: Building a CNN -- Activity 7.01: Building a CNN with More ANN Layers -- Summary -- Chapter 8: Pre-Trained Networks -- Introduction -- ImageNet -- Transfer Learning -- Exercise 8.01: Classifying Cats and Dogs with Transfer Learning -- Fine-Tuning -- Activity 8.01: Fruit Classification with Fine-Tuning -- TensorFlow Hub -- Feature Extraction -- Activity 8.02: Transfer Learning with TensorFlow Hub -- Summary -- Chapter 9: Recurrent Neural Networks -- Introduction -- Sequential Data. | |
505 | 8 | |a Examples of Sequential Data -- Exercise 9.01: Training an ANN for Sequential Data -- Nvidia Stock Prediction -- Recurrent Neural Networks -- RNN Architecture -- Vanishing Gradient Problem -- Long Short-Term Memory Network -- Exercise 9.02: Building an RNN with an LSTM Layer -- Nvidia Stock Prediction -- Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption -- Natural Language Processing -- Data Preprocessing -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Padding Sequences -- Back Propagation Through Time (BPTT) -- Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing -- Activity 9.02: Building an RNN for Predicting Tweets' Sentiment -- Summary -- Chapter 10: Custom TensorFlow Components -- Introduction -- TensorFlow APIs -- Implementing Custom Loss Functions -- Building a Custom Loss Function with the Functional API -- Building a Custom Loss Function with the Subclassing API -- Exercise 10.01: Building a Custom Loss Function -- Implementing Custom Layers -- Introduction to ResNet Blocks -- Building Custom Layers with the Functional API -- Building Custom Layers with Subclassing -- Exercise 10.02: Building a Custom Layer -- Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function -- Summary -- Chapter 11: Generative Models -- Introduction -- Text Generation -- Extending NLP Sequence Models to Generate Text -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Generating a Sequence of n-gram Tokens -- Padding Sequences -- Exercise 11.01: Generating Text -- Generative Adversarial Networks -- The Generator Network -- The Discriminator Network -- The Adversarial Network -- Combining the Generative and Discriminative Models -- Generating Real Samples with Class Labels -- Creating Latent Points for the Generator. | |
505 | 8 | |a Using the Generator to Generate Fake Samples and Class Labels -- Evaluating the Discriminator Model -- Training the Generator and Discriminator -- Creating the Latent Space, Generator, Discriminator, GAN, and Training Data -- Exercise 11.02: Generating Sequences with GANs -- Deep Convolutional Generative Adversarial Networks (DCGANs) -- Training a DCGAN -- Exercise 11.03: Generating Images with DCGAN -- Activity 11.01: Generating Images Using GANs -- Summary -- Appendix -- Index. | |
520 | |a This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model. | ||
630 | 0 | 0 | |a TensorFlow. |0 http://id.loc.gov/authorities/names/n2019020612 |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 0 | |a Open source software. |0 http://id.loc.gov/authorities/subjects/sh99003437 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 6 | |a Logiciels libres. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a COMPUTERS / Programming Languages / Python. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Open source software |2 fast | |
700 | 1 | |a Maddalone, Anthony. | |
700 | 1 | |a So, Anthony. | |
758 | |i has work: |a The TensorFlow Workshop (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYMJ9fpdBBMctp7fCyhwCP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781800200227 |
776 | 0 | 8 | |i Print version: |z 1800205252 |z 9781800205253 |w (OCoLC)1252848484 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3123350 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9781800200227 | ||
938 | |a YBP Library Services |b YANK |n 302645597 | ||
938 | |a EBSCOhost |b EBSC |n 3123350 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH39349432 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6828344 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1289442521 |
---|---|
_version_ | 1816882554236567552 |
adam_text | |
any_adam_object | |
author | Moocarme, Matthew |
author2 | Maddalone, Anthony So, Anthony |
author2_role | |
author2_variant | a m am a s as |
author_facet | Moocarme, Matthew Maddalone, Anthony So, Anthony |
author_role | |
author_sort | Moocarme, Matthew |
author_variant | m m mm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning with TensorFlow -- Introduction -- Implementing Artificial Neural Networks in TensorFlow -- Advantages of TensorFlow -- Disadvantages of TensorFlow -- The TensorFlow Library in Python -- Exercise 1.01: Verifying Your Version of TensorFlow -- Introduction to Tensors -- Scalars, Vectors, Matrices, and Tensors -- Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow -- Tensor Addition -- Exercise 1.03: Performing Tensor Addition in TensorFlow -- Activity 1.01: Performing Tensor Addition in TensorFlow -- Reshaping -- Tensor Transposition -- Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow -- Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow -- Tensor Multiplication -- Exercise 1.05: Performing Tensor Multiplication in TensorFlow -- Optimization -- Forward Propagation -- Backpropagation -- Learning Optimal Parameters -- Optimizers in TensorFlow -- Activation functions -- Activity 1.03: Applying Activation Functions -- Summary -- Chapter 2: Loading and Processing Data -- Introduction -- Exploring Data Types -- Data Preprocessing -- Processing Tabular Data -- Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields -- Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler -- Exercise 2.02: Preprocessing Non-Numerical Data -- Processing Image Data -- Exercise 2.03: Loading Image Data for Batch Processing -- Image Augmentation -- Activity 2.02: Loading Image Data for Batch Processing -- Text Processing -- Exercise 2.04: Loading Text Data for TensorFlow Models -- Audio Processing -- Exercise 2.05: Loading Audio Data for TensorFlow Models -- Activity 2.03: Loading Audio Data for Batch Processing -- Summary. Chapter 3: TensorFlow Development -- Introduction -- TensorBoard -- Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication -- Activity 3.01: Using TensorBoard to Visualize Tensor Transformations -- Exercise 3.02: Using TensorBoard to Visualize Image Batches -- TensorFlow Hub -- Exercise 3.03: Downloading a Model from TensorFlow Hub -- Google Colab -- Advantages of Google Colab -- Disadvantages of Google Colab -- Development on Google Colab -- Exercise 3.04: Using Google Colab to Visualize Data -- Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub -- Summary -- Chapter 4: Regression and Classification Models -- Introduction -- Sequential Models -- Keras Layers -- Exercise 4.01: Creating an ANN with TensorFlow -- Model Fitting -- The Loss Function -- Model Evaluation -- Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow -- Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow -- Activity 4.01: Creating a Multi-Layer ANN with TensorFlow -- Classification Models -- Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow -- Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow -- Summary -- Chapter 5: Classification Models -- Introduction -- Binary Classification -- Logistic Regression -- Binary Cross-Entropy -- Binary Classification Architecture -- Exercise 5.01: Building a Logistic Regression Model -- Metrics for Classifiers -- Accuracy and Null Accuracy -- Precision, Recall, and the F1 Score -- Confusion Matrices -- Exercise 5.02: Classification Evaluation Metrics -- Multi-Class Classification -- The Softmax Function -- Categorical Cross-Entropy -- Multi-Class Classification Architecture -- Exercise 5.03: Building a Multi-Class Model -- Activity 5.01: Building a Character Recognition Model with TensorFlow -- Multi-Label Classification. Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow -- Summary -- Chapter 6: Regularization and Hyperparameter Tuning -- Introduction -- Regularization Techniques -- L1 Regularization -- L2 Regularization -- Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer -- Dropout Regularization -- Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout -- Early Stopping -- Activity 6.01: Predicting Income with L1 and L2 Regularizers -- Hyperparameter Tuning -- Keras Tuner -- Random Search -- Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner -- Hyperband -- Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner -- Bayesian Optimization -- Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner -- Summary -- Chapter 7: Convolutional Neural Networks -- Introduction -- CNNs -- Image Representation -- The Convolutional Layer -- Creating the Model -- Exercise 7.01: Creating the First Layer to Build a CNN -- Pooling Layer -- Max Pooling -- Average Pooling -- Exercise 7.02: Creating a Pooling Layer for a CNN -- Flattening Layer -- Exercise 7.03: Building a CNN -- Image Augmentation -- Batch Normalization -- Exercise 7.04: Building a CNN with Additional Convolutional Layers -- Binary Image Classification -- Object Classification -- Exercise 7.05: Building a CNN -- Activity 7.01: Building a CNN with More ANN Layers -- Summary -- Chapter 8: Pre-Trained Networks -- Introduction -- ImageNet -- Transfer Learning -- Exercise 8.01: Classifying Cats and Dogs with Transfer Learning -- Fine-Tuning -- Activity 8.01: Fruit Classification with Fine-Tuning -- TensorFlow Hub -- Feature Extraction -- Activity 8.02: Transfer Learning with TensorFlow Hub -- Summary -- Chapter 9: Recurrent Neural Networks -- Introduction -- Sequential Data. Examples of Sequential Data -- Exercise 9.01: Training an ANN for Sequential Data -- Nvidia Stock Prediction -- Recurrent Neural Networks -- RNN Architecture -- Vanishing Gradient Problem -- Long Short-Term Memory Network -- Exercise 9.02: Building an RNN with an LSTM Layer -- Nvidia Stock Prediction -- Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption -- Natural Language Processing -- Data Preprocessing -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Padding Sequences -- Back Propagation Through Time (BPTT) -- Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing -- Activity 9.02: Building an RNN for Predicting Tweets' Sentiment -- Summary -- Chapter 10: Custom TensorFlow Components -- Introduction -- TensorFlow APIs -- Implementing Custom Loss Functions -- Building a Custom Loss Function with the Functional API -- Building a Custom Loss Function with the Subclassing API -- Exercise 10.01: Building a Custom Loss Function -- Implementing Custom Layers -- Introduction to ResNet Blocks -- Building Custom Layers with the Functional API -- Building Custom Layers with Subclassing -- Exercise 10.02: Building a Custom Layer -- Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function -- Summary -- Chapter 11: Generative Models -- Introduction -- Text Generation -- Extending NLP Sequence Models to Generate Text -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Generating a Sequence of n-gram Tokens -- Padding Sequences -- Exercise 11.01: Generating Text -- Generative Adversarial Networks -- The Generator Network -- The Discriminator Network -- The Adversarial Network -- Combining the Generative and Discriminative Models -- Generating Real Samples with Class Labels -- Creating Latent Points for the Generator. Using the Generator to Generate Fake Samples and Class Labels -- Evaluating the Discriminator Model -- Training the Generator and Discriminator -- Creating the Latent Space, Generator, Discriminator, GAN, and Training Data -- Exercise 11.02: Generating Sequences with GANs -- Deep Convolutional Generative Adversarial Networks (DCGANs) -- Training a DCGAN -- Exercise 11.03: Generating Images with DCGAN -- Activity 11.01: Generating Images Using GANs -- Summary -- Appendix -- Index. |
ctrlnum | (OCoLC)1289442521 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11258cam a2200745 4500</leader><controlfield tag="001">ZDB-4-EBA-on1289442521</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">211219s2021 xx o 0|| 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="c">YDX</subfield><subfield code="d">UKMGB</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OLDSC</subfield><subfield code="d">DEGRU</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC193047</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">020220534</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1289479803</subfield><subfield code="a">1289535966</subfield><subfield code="a">1289608626</subfield><subfield code="a">1290024236</subfield><subfield code="a">1290484385</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800200227</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1800200226</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1800205252</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781800205253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289442521</subfield><subfield code="z">(OCoLC)1289479803</subfield><subfield code="z">(OCoLC)1289535966</subfield><subfield code="z">(OCoLC)1289608626</subfield><subfield code="z">(OCoLC)1290024236</subfield><subfield code="z">(OCoLC)1290484385</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781800200227</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">10163586</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moocarme, Matthew.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">THE TENSORFLOW WORKSHOP</subfield><subfield code="h">[electronic resource] :</subfield><subfield code="b">a hands-on guide to building deep learning models from scratch using real-world datasets.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[S.l.] :</subfield><subfield code="b">PACKT PUBLISHING LIMITED,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning with TensorFlow -- Introduction -- Implementing Artificial Neural Networks in TensorFlow -- Advantages of TensorFlow -- Disadvantages of TensorFlow -- The TensorFlow Library in Python -- Exercise 1.01: Verifying Your Version of TensorFlow -- Introduction to Tensors -- Scalars, Vectors, Matrices, and Tensors -- Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow -- Tensor Addition -- Exercise 1.03: Performing Tensor Addition in TensorFlow -- Activity 1.01: Performing Tensor Addition in TensorFlow -- Reshaping -- Tensor Transposition -- Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow -- Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow -- Tensor Multiplication -- Exercise 1.05: Performing Tensor Multiplication in TensorFlow -- Optimization -- Forward Propagation -- Backpropagation -- Learning Optimal Parameters -- Optimizers in TensorFlow -- Activation functions -- Activity 1.03: Applying Activation Functions -- Summary -- Chapter 2: Loading and Processing Data -- Introduction -- Exploring Data Types -- Data Preprocessing -- Processing Tabular Data -- Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields -- Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler -- Exercise 2.02: Preprocessing Non-Numerical Data -- Processing Image Data -- Exercise 2.03: Loading Image Data for Batch Processing -- Image Augmentation -- Activity 2.02: Loading Image Data for Batch Processing -- Text Processing -- Exercise 2.04: Loading Text Data for TensorFlow Models -- Audio Processing -- Exercise 2.05: Loading Audio Data for TensorFlow Models -- Activity 2.03: Loading Audio Data for Batch Processing -- Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3: TensorFlow Development -- Introduction -- TensorBoard -- Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication -- Activity 3.01: Using TensorBoard to Visualize Tensor Transformations -- Exercise 3.02: Using TensorBoard to Visualize Image Batches -- TensorFlow Hub -- Exercise 3.03: Downloading a Model from TensorFlow Hub -- Google Colab -- Advantages of Google Colab -- Disadvantages of Google Colab -- Development on Google Colab -- Exercise 3.04: Using Google Colab to Visualize Data -- Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub -- Summary -- Chapter 4: Regression and Classification Models -- Introduction -- Sequential Models -- Keras Layers -- Exercise 4.01: Creating an ANN with TensorFlow -- Model Fitting -- The Loss Function -- Model Evaluation -- Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow -- Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow -- Activity 4.01: Creating a Multi-Layer ANN with TensorFlow -- Classification Models -- Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow -- Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow -- Summary -- Chapter 5: Classification Models -- Introduction -- Binary Classification -- Logistic Regression -- Binary Cross-Entropy -- Binary Classification Architecture -- Exercise 5.01: Building a Logistic Regression Model -- Metrics for Classifiers -- Accuracy and Null Accuracy -- Precision, Recall, and the F1 Score -- Confusion Matrices -- Exercise 5.02: Classification Evaluation Metrics -- Multi-Class Classification -- The Softmax Function -- Categorical Cross-Entropy -- Multi-Class Classification Architecture -- Exercise 5.03: Building a Multi-Class Model -- Activity 5.01: Building a Character Recognition Model with TensorFlow -- Multi-Label Classification.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow -- Summary -- Chapter 6: Regularization and Hyperparameter Tuning -- Introduction -- Regularization Techniques -- L1 Regularization -- L2 Regularization -- Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer -- Dropout Regularization -- Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout -- Early Stopping -- Activity 6.01: Predicting Income with L1 and L2 Regularizers -- Hyperparameter Tuning -- Keras Tuner -- Random Search -- Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner -- Hyperband -- Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner -- Bayesian Optimization -- Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner -- Summary -- Chapter 7: Convolutional Neural Networks -- Introduction -- CNNs -- Image Representation -- The Convolutional Layer -- Creating the Model -- Exercise 7.01: Creating the First Layer to Build a CNN -- Pooling Layer -- Max Pooling -- Average Pooling -- Exercise 7.02: Creating a Pooling Layer for a CNN -- Flattening Layer -- Exercise 7.03: Building a CNN -- Image Augmentation -- Batch Normalization -- Exercise 7.04: Building a CNN with Additional Convolutional Layers -- Binary Image Classification -- Object Classification -- Exercise 7.05: Building a CNN -- Activity 7.01: Building a CNN with More ANN Layers -- Summary -- Chapter 8: Pre-Trained Networks -- Introduction -- ImageNet -- Transfer Learning -- Exercise 8.01: Classifying Cats and Dogs with Transfer Learning -- Fine-Tuning -- Activity 8.01: Fruit Classification with Fine-Tuning -- TensorFlow Hub -- Feature Extraction -- Activity 8.02: Transfer Learning with TensorFlow Hub -- Summary -- Chapter 9: Recurrent Neural Networks -- Introduction -- Sequential Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Examples of Sequential Data -- Exercise 9.01: Training an ANN for Sequential Data -- Nvidia Stock Prediction -- Recurrent Neural Networks -- RNN Architecture -- Vanishing Gradient Problem -- Long Short-Term Memory Network -- Exercise 9.02: Building an RNN with an LSTM Layer -- Nvidia Stock Prediction -- Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption -- Natural Language Processing -- Data Preprocessing -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Padding Sequences -- Back Propagation Through Time (BPTT) -- Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing -- Activity 9.02: Building an RNN for Predicting Tweets' Sentiment -- Summary -- Chapter 10: Custom TensorFlow Components -- Introduction -- TensorFlow APIs -- Implementing Custom Loss Functions -- Building a Custom Loss Function with the Functional API -- Building a Custom Loss Function with the Subclassing API -- Exercise 10.01: Building a Custom Loss Function -- Implementing Custom Layers -- Introduction to ResNet Blocks -- Building Custom Layers with the Functional API -- Building Custom Layers with Subclassing -- Exercise 10.02: Building a Custom Layer -- Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function -- Summary -- Chapter 11: Generative Models -- Introduction -- Text Generation -- Extending NLP Sequence Models to Generate Text -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Generating a Sequence of n-gram Tokens -- Padding Sequences -- Exercise 11.01: Generating Text -- Generative Adversarial Networks -- The Generator Network -- The Discriminator Network -- The Adversarial Network -- Combining the Generative and Discriminative Models -- Generating Real Samples with Class Labels -- Creating Latent Points for the Generator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using the Generator to Generate Fake Samples and Class Labels -- Evaluating the Discriminator Model -- Training the Generator and Discriminator -- Creating the Latent Space, Generator, Discriminator, GAN, and Training Data -- Exercise 11.02: Generating Sequences with GANs -- Deep Convolutional Generative Adversarial Networks (DCGANs) -- Training a DCGAN -- Exercise 11.03: Generating Images with DCGAN -- Activity 11.01: Generating Images Using GANs -- Summary -- Appendix -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">TensorFlow.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2019020612</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Open source software.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99003437</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels libres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Open source software</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maddalone, Anthony.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">So, Anthony.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The TensorFlow Workshop (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYMJ9fpdBBMctp7fCyhwCP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781800200227</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1800205252</subfield><subfield code="z">9781800205253</subfield><subfield code="w">(OCoLC)1252848484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3123350</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781800200227</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">302645597</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3123350</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH39349432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6828344</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1289442521 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:27Z |
institution | BVB |
isbn | 9781800200227 1800200226 |
language | English |
oclc_num | 1289442521 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | PACKT PUBLISHING LIMITED, |
record_format | marc |
spelling | Moocarme, Matthew. THE TENSORFLOW WORKSHOP [electronic resource] : a hands-on guide to building deep learning models from scratch using real-world datasets. [S.l.] : PACKT PUBLISHING LIMITED, 2021. 1 online resource text rdacontent computer rdamedia online resource rdacarrier Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning with TensorFlow -- Introduction -- Implementing Artificial Neural Networks in TensorFlow -- Advantages of TensorFlow -- Disadvantages of TensorFlow -- The TensorFlow Library in Python -- Exercise 1.01: Verifying Your Version of TensorFlow -- Introduction to Tensors -- Scalars, Vectors, Matrices, and Tensors -- Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow -- Tensor Addition -- Exercise 1.03: Performing Tensor Addition in TensorFlow -- Activity 1.01: Performing Tensor Addition in TensorFlow -- Reshaping -- Tensor Transposition -- Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow -- Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow -- Tensor Multiplication -- Exercise 1.05: Performing Tensor Multiplication in TensorFlow -- Optimization -- Forward Propagation -- Backpropagation -- Learning Optimal Parameters -- Optimizers in TensorFlow -- Activation functions -- Activity 1.03: Applying Activation Functions -- Summary -- Chapter 2: Loading and Processing Data -- Introduction -- Exploring Data Types -- Data Preprocessing -- Processing Tabular Data -- Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields -- Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler -- Exercise 2.02: Preprocessing Non-Numerical Data -- Processing Image Data -- Exercise 2.03: Loading Image Data for Batch Processing -- Image Augmentation -- Activity 2.02: Loading Image Data for Batch Processing -- Text Processing -- Exercise 2.04: Loading Text Data for TensorFlow Models -- Audio Processing -- Exercise 2.05: Loading Audio Data for TensorFlow Models -- Activity 2.03: Loading Audio Data for Batch Processing -- Summary. Chapter 3: TensorFlow Development -- Introduction -- TensorBoard -- Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication -- Activity 3.01: Using TensorBoard to Visualize Tensor Transformations -- Exercise 3.02: Using TensorBoard to Visualize Image Batches -- TensorFlow Hub -- Exercise 3.03: Downloading a Model from TensorFlow Hub -- Google Colab -- Advantages of Google Colab -- Disadvantages of Google Colab -- Development on Google Colab -- Exercise 3.04: Using Google Colab to Visualize Data -- Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub -- Summary -- Chapter 4: Regression and Classification Models -- Introduction -- Sequential Models -- Keras Layers -- Exercise 4.01: Creating an ANN with TensorFlow -- Model Fitting -- The Loss Function -- Model Evaluation -- Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow -- Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow -- Activity 4.01: Creating a Multi-Layer ANN with TensorFlow -- Classification Models -- Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow -- Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow -- Summary -- Chapter 5: Classification Models -- Introduction -- Binary Classification -- Logistic Regression -- Binary Cross-Entropy -- Binary Classification Architecture -- Exercise 5.01: Building a Logistic Regression Model -- Metrics for Classifiers -- Accuracy and Null Accuracy -- Precision, Recall, and the F1 Score -- Confusion Matrices -- Exercise 5.02: Classification Evaluation Metrics -- Multi-Class Classification -- The Softmax Function -- Categorical Cross-Entropy -- Multi-Class Classification Architecture -- Exercise 5.03: Building a Multi-Class Model -- Activity 5.01: Building a Character Recognition Model with TensorFlow -- Multi-Label Classification. Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow -- Summary -- Chapter 6: Regularization and Hyperparameter Tuning -- Introduction -- Regularization Techniques -- L1 Regularization -- L2 Regularization -- Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer -- Dropout Regularization -- Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout -- Early Stopping -- Activity 6.01: Predicting Income with L1 and L2 Regularizers -- Hyperparameter Tuning -- Keras Tuner -- Random Search -- Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner -- Hyperband -- Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner -- Bayesian Optimization -- Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner -- Summary -- Chapter 7: Convolutional Neural Networks -- Introduction -- CNNs -- Image Representation -- The Convolutional Layer -- Creating the Model -- Exercise 7.01: Creating the First Layer to Build a CNN -- Pooling Layer -- Max Pooling -- Average Pooling -- Exercise 7.02: Creating a Pooling Layer for a CNN -- Flattening Layer -- Exercise 7.03: Building a CNN -- Image Augmentation -- Batch Normalization -- Exercise 7.04: Building a CNN with Additional Convolutional Layers -- Binary Image Classification -- Object Classification -- Exercise 7.05: Building a CNN -- Activity 7.01: Building a CNN with More ANN Layers -- Summary -- Chapter 8: Pre-Trained Networks -- Introduction -- ImageNet -- Transfer Learning -- Exercise 8.01: Classifying Cats and Dogs with Transfer Learning -- Fine-Tuning -- Activity 8.01: Fruit Classification with Fine-Tuning -- TensorFlow Hub -- Feature Extraction -- Activity 8.02: Transfer Learning with TensorFlow Hub -- Summary -- Chapter 9: Recurrent Neural Networks -- Introduction -- Sequential Data. Examples of Sequential Data -- Exercise 9.01: Training an ANN for Sequential Data -- Nvidia Stock Prediction -- Recurrent Neural Networks -- RNN Architecture -- Vanishing Gradient Problem -- Long Short-Term Memory Network -- Exercise 9.02: Building an RNN with an LSTM Layer -- Nvidia Stock Prediction -- Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption -- Natural Language Processing -- Data Preprocessing -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Padding Sequences -- Back Propagation Through Time (BPTT) -- Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing -- Activity 9.02: Building an RNN for Predicting Tweets' Sentiment -- Summary -- Chapter 10: Custom TensorFlow Components -- Introduction -- TensorFlow APIs -- Implementing Custom Loss Functions -- Building a Custom Loss Function with the Functional API -- Building a Custom Loss Function with the Subclassing API -- Exercise 10.01: Building a Custom Loss Function -- Implementing Custom Layers -- Introduction to ResNet Blocks -- Building Custom Layers with the Functional API -- Building Custom Layers with Subclassing -- Exercise 10.02: Building a Custom Layer -- Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function -- Summary -- Chapter 11: Generative Models -- Introduction -- Text Generation -- Extending NLP Sequence Models to Generate Text -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Generating a Sequence of n-gram Tokens -- Padding Sequences -- Exercise 11.01: Generating Text -- Generative Adversarial Networks -- The Generator Network -- The Discriminator Network -- The Adversarial Network -- Combining the Generative and Discriminative Models -- Generating Real Samples with Class Labels -- Creating Latent Points for the Generator. Using the Generator to Generate Fake Samples and Class Labels -- Evaluating the Discriminator Model -- Training the Generator and Discriminator -- Creating the Latent Space, Generator, Discriminator, GAN, and Training Data -- Exercise 11.02: Generating Sequences with GANs -- Deep Convolutional Generative Adversarial Networks (DCGANs) -- Training a DCGAN -- Exercise 11.03: Generating Images with DCGAN -- Activity 11.01: Generating Images Using GANs -- Summary -- Appendix -- Index. This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model. TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Logiciels libres. artificial intelligence. aat COMPUTERS / Programming Languages / Python. bisacsh Artificial intelligence fast Machine learning fast Open source software fast Maddalone, Anthony. So, Anthony. has work: The TensorFlow Workshop (Text) https://id.oclc.org/worldcat/entity/E39PCYMJ9fpdBBMctp7fCyhwCP https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781800200227 Print version: 1800205252 9781800205253 (OCoLC)1252848484 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3123350 Volltext |
spellingShingle | Moocarme, Matthew THE TENSORFLOW WORKSHOP a hands-on guide to building deep learning models from scratch using real-world datasets. Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning with TensorFlow -- Introduction -- Implementing Artificial Neural Networks in TensorFlow -- Advantages of TensorFlow -- Disadvantages of TensorFlow -- The TensorFlow Library in Python -- Exercise 1.01: Verifying Your Version of TensorFlow -- Introduction to Tensors -- Scalars, Vectors, Matrices, and Tensors -- Exercise 1.02: Creating Scalars, Vectors, Matrices, and Tensors in TensorFlow -- Tensor Addition -- Exercise 1.03: Performing Tensor Addition in TensorFlow -- Activity 1.01: Performing Tensor Addition in TensorFlow -- Reshaping -- Tensor Transposition -- Exercise 1.04: Performing Tensor Reshaping and Transposition in TensorFlow -- Activity 1.02: Performing Tensor Reshaping and Transposition in TensorFlow -- Tensor Multiplication -- Exercise 1.05: Performing Tensor Multiplication in TensorFlow -- Optimization -- Forward Propagation -- Backpropagation -- Learning Optimal Parameters -- Optimizers in TensorFlow -- Activation functions -- Activity 1.03: Applying Activation Functions -- Summary -- Chapter 2: Loading and Processing Data -- Introduction -- Exploring Data Types -- Data Preprocessing -- Processing Tabular Data -- Exercise 2.01: Loading Tabular Data and Rescaling Numerical Fields -- Activity 2.01: Loading Tabular Data and Rescaling Numerical Fields with a MinMax Scaler -- Exercise 2.02: Preprocessing Non-Numerical Data -- Processing Image Data -- Exercise 2.03: Loading Image Data for Batch Processing -- Image Augmentation -- Activity 2.02: Loading Image Data for Batch Processing -- Text Processing -- Exercise 2.04: Loading Text Data for TensorFlow Models -- Audio Processing -- Exercise 2.05: Loading Audio Data for TensorFlow Models -- Activity 2.03: Loading Audio Data for Batch Processing -- Summary. Chapter 3: TensorFlow Development -- Introduction -- TensorBoard -- Exercise 3.01: Using TensorBoard to Visualize Matrix Multiplication -- Activity 3.01: Using TensorBoard to Visualize Tensor Transformations -- Exercise 3.02: Using TensorBoard to Visualize Image Batches -- TensorFlow Hub -- Exercise 3.03: Downloading a Model from TensorFlow Hub -- Google Colab -- Advantages of Google Colab -- Disadvantages of Google Colab -- Development on Google Colab -- Exercise 3.04: Using Google Colab to Visualize Data -- Activity 3.02: Performing Word Embedding from a Pre-Trained Model from TensorFlow Hub -- Summary -- Chapter 4: Regression and Classification Models -- Introduction -- Sequential Models -- Keras Layers -- Exercise 4.01: Creating an ANN with TensorFlow -- Model Fitting -- The Loss Function -- Model Evaluation -- Exercise 4.02: Creating a Linear Regression Model as an ANN with TensorFlow -- Exercise 4.03: Creating a Multi-Layer ANN with TensorFlow -- Activity 4.01: Creating a Multi-Layer ANN with TensorFlow -- Classification Models -- Exercise 4.04: Creating a Logistic Regression Model as an ANN with TensorFlow -- Activity 4.02: Creating a Multi-Layer Classification ANN with TensorFlow -- Summary -- Chapter 5: Classification Models -- Introduction -- Binary Classification -- Logistic Regression -- Binary Cross-Entropy -- Binary Classification Architecture -- Exercise 5.01: Building a Logistic Regression Model -- Metrics for Classifiers -- Accuracy and Null Accuracy -- Precision, Recall, and the F1 Score -- Confusion Matrices -- Exercise 5.02: Classification Evaluation Metrics -- Multi-Class Classification -- The Softmax Function -- Categorical Cross-Entropy -- Multi-Class Classification Architecture -- Exercise 5.03: Building a Multi-Class Model -- Activity 5.01: Building a Character Recognition Model with TensorFlow -- Multi-Label Classification. Activity 5.02: Building a Movie Genre Tagging a Model with TensorFlow -- Summary -- Chapter 6: Regularization and Hyperparameter Tuning -- Introduction -- Regularization Techniques -- L1 Regularization -- L2 Regularization -- Exercise 6.01: Predicting a Connect-4 Game Outcome Using the L2 Regularizer -- Dropout Regularization -- Exercise 6.02: Predicting a Connect-4 Game Outcome Using Dropout -- Early Stopping -- Activity 6.01: Predicting Income with L1 and L2 Regularizers -- Hyperparameter Tuning -- Keras Tuner -- Random Search -- Exercise 6.03: Predicting a Connect-4 Game Outcome Using Random Search from Keras Tuner -- Hyperband -- Exercise 6.04: Predicting a Connect-4 Game Outcome Using Hyperband from Keras Tuner -- Bayesian Optimization -- Activity 6.02: Predicting Income with Bayesian Optimization from Keras Tuner -- Summary -- Chapter 7: Convolutional Neural Networks -- Introduction -- CNNs -- Image Representation -- The Convolutional Layer -- Creating the Model -- Exercise 7.01: Creating the First Layer to Build a CNN -- Pooling Layer -- Max Pooling -- Average Pooling -- Exercise 7.02: Creating a Pooling Layer for a CNN -- Flattening Layer -- Exercise 7.03: Building a CNN -- Image Augmentation -- Batch Normalization -- Exercise 7.04: Building a CNN with Additional Convolutional Layers -- Binary Image Classification -- Object Classification -- Exercise 7.05: Building a CNN -- Activity 7.01: Building a CNN with More ANN Layers -- Summary -- Chapter 8: Pre-Trained Networks -- Introduction -- ImageNet -- Transfer Learning -- Exercise 8.01: Classifying Cats and Dogs with Transfer Learning -- Fine-Tuning -- Activity 8.01: Fruit Classification with Fine-Tuning -- TensorFlow Hub -- Feature Extraction -- Activity 8.02: Transfer Learning with TensorFlow Hub -- Summary -- Chapter 9: Recurrent Neural Networks -- Introduction -- Sequential Data. Examples of Sequential Data -- Exercise 9.01: Training an ANN for Sequential Data -- Nvidia Stock Prediction -- Recurrent Neural Networks -- RNN Architecture -- Vanishing Gradient Problem -- Long Short-Term Memory Network -- Exercise 9.02: Building an RNN with an LSTM Layer -- Nvidia Stock Prediction -- Activity 9.01: Building an RNN with Multiple LSTM Layers to Predict Power Consumption -- Natural Language Processing -- Data Preprocessing -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Padding Sequences -- Back Propagation Through Time (BPTT) -- Exercise 9.03: Building an RNN with an LSTM Layer for Natural Language Processing -- Activity 9.02: Building an RNN for Predicting Tweets' Sentiment -- Summary -- Chapter 10: Custom TensorFlow Components -- Introduction -- TensorFlow APIs -- Implementing Custom Loss Functions -- Building a Custom Loss Function with the Functional API -- Building a Custom Loss Function with the Subclassing API -- Exercise 10.01: Building a Custom Loss Function -- Implementing Custom Layers -- Introduction to ResNet Blocks -- Building Custom Layers with the Functional API -- Building Custom Layers with Subclassing -- Exercise 10.02: Building a Custom Layer -- Activity 10.01: Building a Model with Custom Layers and a Custom Loss Function -- Summary -- Chapter 11: Generative Models -- Introduction -- Text Generation -- Extending NLP Sequence Models to Generate Text -- Dataset Cleaning -- Generating a Sequence and Tokenization -- Generating a Sequence of n-gram Tokens -- Padding Sequences -- Exercise 11.01: Generating Text -- Generative Adversarial Networks -- The Generator Network -- The Discriminator Network -- The Adversarial Network -- Combining the Generative and Discriminative Models -- Generating Real Samples with Class Labels -- Creating Latent Points for the Generator. Using the Generator to Generate Fake Samples and Class Labels -- Evaluating the Discriminator Model -- Training the Generator and Discriminator -- Creating the Latent Space, Generator, Discriminator, GAN, and Training Data -- Exercise 11.02: Generating Sequences with GANs -- Deep Convolutional Generative Adversarial Networks (DCGANs) -- Training a DCGAN -- Exercise 11.03: Generating Images with DCGAN -- Activity 11.01: Generating Images Using GANs -- Summary -- Appendix -- Index. TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Logiciels libres. artificial intelligence. aat COMPUTERS / Programming Languages / Python. bisacsh Artificial intelligence fast Machine learning fast Open source software fast |
subject_GND | http://id.loc.gov/authorities/names/n2019020612 http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh99003437 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | THE TENSORFLOW WORKSHOP a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_auth | THE TENSORFLOW WORKSHOP a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_exact_search | THE TENSORFLOW WORKSHOP a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_full | THE TENSORFLOW WORKSHOP [electronic resource] : a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_fullStr | THE TENSORFLOW WORKSHOP [electronic resource] : a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_full_unstemmed | THE TENSORFLOW WORKSHOP [electronic resource] : a hands-on guide to building deep learning models from scratch using real-world datasets. |
title_short | THE TENSORFLOW WORKSHOP |
title_sort | tensorflow workshop a hands on guide to building deep learning models from scratch using real world datasets |
title_sub | a hands-on guide to building deep learning models from scratch using real-world datasets. |
topic | TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Logiciels libres. artificial intelligence. aat COMPUTERS / Programming Languages / Python. bisacsh Artificial intelligence fast Machine learning fast Open source software fast |
topic_facet | TensorFlow. Machine learning. Artificial intelligence. Open source software. Artificial Intelligence Machine Learning Apprentissage automatique. Intelligence artificielle. Logiciels libres. artificial intelligence. COMPUTERS / Programming Languages / Python. Artificial intelligence Machine learning Open source software |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3123350 |
work_keys_str_mv | AT moocarmematthew thetensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets AT maddaloneanthony thetensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets AT soanthony thetensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets AT moocarmematthew tensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets AT maddaloneanthony tensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets AT soanthony tensorflowworkshopahandsonguidetobuildingdeeplearningmodelsfromscratchusingrealworlddatasets |