Extending Power BI with Python and R :: ingest, transform, enrich and visualize using the power of analytic languages /
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key Features Get the most out of Python and R with Power BI by implementing non-trivial code Leverage the toolset of Python and R chunks to inject scripts into your...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2021.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key Features Get the most out of Python and R with Power BI by implementing non-trivial code Leverage the toolset of Python and R chunks to inject scripts into your Power BI dashboards Implement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BI Book DescriptionPython and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learn Discover best practices for using Python and R in Power BI products Use Python and R to perform complex data manipulations in Power BI Apply data anonymization and data pseudonymization in Power BI Log data and load large datasets in Power BI using Python and R Enrich your Power BI dashboards using external APIs and machine learning models Extract insights from your data using linear optimization and other algorithms Handle outliers and missing values for multivariate and time-series data Create any visualization, as complex as you want, using R scripts Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful. |
Beschreibung: | 1 online resource |
ISBN: | 1801076677 9781801076678 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1285686550 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 210920s2021 enk o 000 0 eng d | ||
040 | |a UKMGB |b eng |e rda |e pn |c UKMGB |d OCLCF |d OCLCO |d YDXIT |d N$T |d OCLCO |d OCLCQ |d OCL |d IEEEE |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBC1G3384 |2 bnb | ||
016 | 7 | |a 020342356 |2 Uk | |
020 | |a 1801076677 |q electronic book | ||
020 | |a 9781801076678 |q (electronic bk.) | ||
020 | |z 9781801078207 |q paperback | ||
035 | |a (OCoLC)1285686550 | ||
037 | |a 9781801076678 |b Packt Publishing Pvt. Ltd | ||
037 | |a 10163514 |b IEEE | ||
050 | 4 | |a QA76.9.I52 |b Z38 2021 | |
082 | 7 | |a 001.42260285 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Zavarella, Luca, |e author. | |
245 | 1 | 0 | |a Extending Power BI with Python and R : |b ingest, transform, enrich and visualize using the power of analytic languages / |c Luca Zavarella. |
264 | 1 | |a Birmingham : |b Packt Publishing, |c 2021. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | |a Description based on online resource; title from digital title page (viewed on February 07, 2022). | ||
520 | |a Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key Features Get the most out of Python and R with Power BI by implementing non-trivial code Leverage the toolset of Python and R chunks to inject scripts into your Power BI dashboards Implement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BI Book DescriptionPython and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learn Discover best practices for using Python and R in Power BI products Use Python and R to perform complex data manipulations in Power BI Apply data anonymization and data pseudonymization in Power BI Log data and load large datasets in Power BI using Python and R Enrich your Power BI dashboards using external APIs and machine learning models Extract insights from your data using linear optimization and other algorithms Handle outliers and missing values for multivariate and time-series data Create any visualization, as complex as you want, using R scripts Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful. | ||
505 | 0 | |a Table of Contents Where and How to Use R and Python Scripts in Power BI Configuring R with Power BI Configuring Python with Power BI Importing Unhandled Data Objects Using Regular Expressions in Power BI Anonymizing and Pseudonymizing Your Data in Power BI Logging Data From Power BI To External Sources Loading Large Datasets Beyond the Available RAM in Power BI Calling External APIs to Enrich Your Data Calculating Columns Using Complex Algorithms Adding Statistics Insights: Associations Adding Statistics Insights: Outliers and Missing Values Using Machine Learning Without Premium or Embedded Capacity Exploratory Data Analysis Advanced Visualizations Interactive R Custom Visuals. | |
650 | 0 | |a Information visualization |x Computer programs. | |
650 | 0 | |a Visual analytics |x Data processing. | |
650 | 0 | |a Data mining |x Computer programs. | |
650 | 0 | |a Business intelligence |x Computer programs. | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 6 | |a Visualisation de l'information |x Logiciels. | |
650 | 6 | |a Analyse visuelle |x Informatique. | |
650 | 6 | |a Exploration de données (Informatique) |x Logiciels. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 7 | |a Visual analytics |x Data processing |2 fast | |
650 | 7 | |a Information visualization |x Computer programs |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
700 | 1 | |a Lazzeri, Francesca, |e writer of supplementary textual content. | |
758 | |i has work: |a Extending Power BI with Python and R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYcC8397pRyrjbgxHhwGMd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781801078207 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3074179 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 3074179 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1285686550 |
---|---|
_version_ | 1816882552682577921 |
adam_text | |
any_adam_object | |
author | Zavarella, Luca |
author_facet | Zavarella, Luca |
author_role | aut |
author_sort | Zavarella, Luca |
author_variant | l z lz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.I52 Z38 2021 |
callnumber-search | QA76.9.I52 Z38 2021 |
callnumber-sort | QA 276.9 I52 Z38 42021 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Table of Contents Where and How to Use R and Python Scripts in Power BI Configuring R with Power BI Configuring Python with Power BI Importing Unhandled Data Objects Using Regular Expressions in Power BI Anonymizing and Pseudonymizing Your Data in Power BI Logging Data From Power BI To External Sources Loading Large Datasets Beyond the Available RAM in Power BI Calling External APIs to Enrich Your Data Calculating Columns Using Complex Algorithms Adding Statistics Insights: Associations Adding Statistics Insights: Outliers and Missing Values Using Machine Learning Without Premium or Embedded Capacity Exploratory Data Analysis Advanced Visualizations Interactive R Custom Visuals. |
ctrlnum | (OCoLC)1285686550 |
dewey-full | 001.42260285 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.42260285 |
dewey-search | 001.42260285 |
dewey-sort | 11.42260285 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06050cam a2200613 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1285686550</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">210920s2021 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKMGB</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXIT</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC1G3384</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">020342356</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1801076677</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801076678</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781801078207</subfield><subfield code="q">paperback</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1285686550</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781801076678</subfield><subfield code="b">Packt Publishing Pvt. Ltd</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">10163514</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.I52</subfield><subfield code="b">Z38 2021</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">001.42260285</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zavarella, Luca,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extending Power BI with Python and R :</subfield><subfield code="b">ingest, transform, enrich and visualize using the power of analytic languages /</subfield><subfield code="c">Luca Zavarella.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on February 07, 2022).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key Features Get the most out of Python and R with Power BI by implementing non-trivial code Leverage the toolset of Python and R chunks to inject scripts into your Power BI dashboards Implement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BI Book DescriptionPython and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learn Discover best practices for using Python and R in Power BI products Use Python and R to perform complex data manipulations in Power BI Apply data anonymization and data pseudonymization in Power BI Log data and load large datasets in Power BI using Python and R Enrich your Power BI dashboards using external APIs and machine learning models Extract insights from your data using linear optimization and other algorithms Handle outliers and missing values for multivariate and time-series data Create any visualization, as complex as you want, using R scripts Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Table of Contents Where and How to Use R and Python Scripts in Power BI Configuring R with Power BI Configuring Python with Power BI Importing Unhandled Data Objects Using Regular Expressions in Power BI Anonymizing and Pseudonymizing Your Data in Power BI Logging Data From Power BI To External Sources Loading Large Datasets Beyond the Available RAM in Power BI Calling External APIs to Enrich Your Data Calculating Columns Using Complex Algorithms Adding Statistics Insights: Associations Adding Statistics Insights: Outliers and Missing Values Using Machine Learning Without Premium or Embedded Capacity Exploratory Data Analysis Advanced Visualizations Interactive R Custom Visuals.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information visualization</subfield><subfield code="x">Computer programs.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Visual analytics</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield><subfield code="x">Computer programs.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business intelligence</subfield><subfield code="x">Computer programs.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Visualisation de l'information</subfield><subfield code="x">Logiciels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse visuelle</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield><subfield code="x">Logiciels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visual analytics</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information visualization</subfield><subfield code="x">Computer programs</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lazzeri, Francesca,</subfield><subfield code="e">writer of supplementary textual content.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Extending Power BI with Python and R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYcC8397pRyrjbgxHhwGMd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781801078207</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3074179</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3074179</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1285686550 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:26Z |
institution | BVB |
isbn | 1801076677 9781801076678 |
language | English |
oclc_num | 1285686550 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Zavarella, Luca, author. Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / Luca Zavarella. Birmingham : Packt Publishing, 2021. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Description based on online resource; title from digital title page (viewed on February 07, 2022). Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key Features Get the most out of Python and R with Power BI by implementing non-trivial code Leverage the toolset of Python and R chunks to inject scripts into your Power BI dashboards Implement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BI Book DescriptionPython and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learn Discover best practices for using Python and R in Power BI products Use Python and R to perform complex data manipulations in Power BI Apply data anonymization and data pseudonymization in Power BI Log data and load large datasets in Power BI using Python and R Enrich your Power BI dashboards using external APIs and machine learning models Extract insights from your data using linear optimization and other algorithms Handle outliers and missing values for multivariate and time-series data Create any visualization, as complex as you want, using R scripts Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful. Table of Contents Where and How to Use R and Python Scripts in Power BI Configuring R with Power BI Configuring Python with Power BI Importing Unhandled Data Objects Using Regular Expressions in Power BI Anonymizing and Pseudonymizing Your Data in Power BI Logging Data From Power BI To External Sources Loading Large Datasets Beyond the Available RAM in Power BI Calling External APIs to Enrich Your Data Calculating Columns Using Complex Algorithms Adding Statistics Insights: Associations Adding Statistics Insights: Outliers and Missing Values Using Machine Learning Without Premium or Embedded Capacity Exploratory Data Analysis Advanced Visualizations Interactive R Custom Visuals. Information visualization Computer programs. Visual analytics Data processing. Data mining Computer programs. Business intelligence Computer programs. R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Visualisation de l'information Logiciels. Analyse visuelle Informatique. Exploration de données (Informatique) Logiciels. R (Langage de programmation) Python (Langage de programmation) Visual analytics Data processing fast Information visualization Computer programs fast Python (Computer program language) fast R (Computer program language) fast Lazzeri, Francesca, writer of supplementary textual content. has work: Extending Power BI with Python and R (Text) https://id.oclc.org/worldcat/entity/E39PCYcC8397pRyrjbgxHhwGMd https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781801078207 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3074179 Volltext |
spellingShingle | Zavarella, Luca Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / Table of Contents Where and How to Use R and Python Scripts in Power BI Configuring R with Power BI Configuring Python with Power BI Importing Unhandled Data Objects Using Regular Expressions in Power BI Anonymizing and Pseudonymizing Your Data in Power BI Logging Data From Power BI To External Sources Loading Large Datasets Beyond the Available RAM in Power BI Calling External APIs to Enrich Your Data Calculating Columns Using Complex Algorithms Adding Statistics Insights: Associations Adding Statistics Insights: Outliers and Missing Values Using Machine Learning Without Premium or Embedded Capacity Exploratory Data Analysis Advanced Visualizations Interactive R Custom Visuals. Information visualization Computer programs. Visual analytics Data processing. Data mining Computer programs. Business intelligence Computer programs. R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Visualisation de l'information Logiciels. Analyse visuelle Informatique. Exploration de données (Informatique) Logiciels. R (Langage de programmation) Python (Langage de programmation) Visual analytics Data processing fast Information visualization Computer programs fast Python (Computer program language) fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004407 http://id.loc.gov/authorities/subjects/sh96008834 |
title | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / |
title_auth | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / |
title_exact_search | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / |
title_full | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / Luca Zavarella. |
title_fullStr | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / Luca Zavarella. |
title_full_unstemmed | Extending Power BI with Python and R : ingest, transform, enrich and visualize using the power of analytic languages / Luca Zavarella. |
title_short | Extending Power BI with Python and R : |
title_sort | extending power bi with python and r ingest transform enrich and visualize using the power of analytic languages |
title_sub | ingest, transform, enrich and visualize using the power of analytic languages / |
topic | Information visualization Computer programs. Visual analytics Data processing. Data mining Computer programs. Business intelligence Computer programs. R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Visualisation de l'information Logiciels. Analyse visuelle Informatique. Exploration de données (Informatique) Logiciels. R (Langage de programmation) Python (Langage de programmation) Visual analytics Data processing fast Information visualization Computer programs fast Python (Computer program language) fast R (Computer program language) fast |
topic_facet | Information visualization Computer programs. Visual analytics Data processing. Data mining Computer programs. Business intelligence Computer programs. R (Computer program language) Python (Computer program language) Visualisation de l'information Logiciels. Analyse visuelle Informatique. Exploration de données (Informatique) Logiciels. R (Langage de programmation) Python (Langage de programmation) Visual analytics Data processing Information visualization Computer programs |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3074179 |
work_keys_str_mv | AT zavarellaluca extendingpowerbiwithpythonandringesttransformenrichandvisualizeusingthepowerofanalyticlanguages AT lazzerifrancesca extendingpowerbiwithpythonandringesttransformenrichandvisualizeusingthepowerofanalyticlanguages |