Sustainable organic synthesis :: tools and strategies /
Sustainable Organic Synthesis brings together the expertise of leading scientists in green chemistry, providing a useful resource of techniques and approaches for academic researchers and synthetic chemistry practitioners.
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, UK :
Royal Society of Chemistry,
[2022]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Sustainable Organic Synthesis brings together the expertise of leading scientists in green chemistry, providing a useful resource of techniques and approaches for academic researchers and synthetic chemistry practitioners. |
Beschreibung: | 1 online resource : illustrations (some color) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781839164842 1839164840 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1282257394 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 211103s2022 enka ob 001 0 eng d | ||
040 | |a UKRSC |b eng |e rda |e pn |c UKRSC |d UIU |d YDX |d N$T |d OCLCF |d OCLCO |d OCLCQ |d ORZ |d OCLCO |d OCLCL |d DXU | ||
020 | |a 9781839164842 |q (electronic book) | ||
020 | |a 1839164840 |q (electronic book) | ||
020 | |z 1839162031 | ||
020 | |z 9781839162039 | ||
035 | |a (OCoLC)1282257394 | ||
037 | |a 6354:6194 |b Royal Society of Chemistry |n http://www.rsc.org/spr | ||
050 | 4 | |a QD262 | |
072 | 7 | |a SCI |x 013040 |2 bisacsh | |
072 | 7 | |a SCI |x 026000 |2 bisacsh | |
072 | 7 | |a PNN |2 bicssc | |
072 | 7 | |a RNU |2 bicssc | |
082 | 7 | |a 547.2 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Sustainable organic synthesis : |b tools and strategies / |c edited by Stefano Protti, Alessandro Palmieri. |
264 | 1 | |a London, UK : |b Royal Society of Chemistry, |c [2022] | |
300 | |a 1 online resource : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Description based on online resource; title from digital title page (viewed on February 24, 2022) | |
505 | 0 | |a Cover -- Sustainable Organic Synthesis: Tools and Strategies -- Preface -- Biographies -- Contents -- Section 1 -- Activation of Chemical Substrates under Sustainable Conditions -- Chapter 1 -- Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics -- 1.1 Introduction -- 1.2 Syntheses of Pretomanid -- 1.3 Sustainability Index -- 1.4 Ranking Analysis of the Pretomanid Synthesis Plans -- 1.5 Conclusion -- References -- Chapter 2 -- Homogeneous Catalysis -- 2.1 Introduction -- 2.2 Catalysis -- 2.3 Homogeneous Catalysis -- 2.4 Model Examples -- 2.4.1 Hydrogenation Reactions -- 2.4.2 C-C Bond Forming Reactions -- 2.4.3 C-Heteroatom Bond Forming Reactions -- 2.4.4 Polymerisation Reactions -- 2.5 Conclusions -- References -- Chapter 3 -- Heterogeneous Catalysis -- 3.1 Basic Concepts from a Historical Perspective -- 3.1.1 Heterogeneous Catalysts -- 3.1.1.1 Bulk Inorganic Catalysts -- 3.1.1.2 Bulk Organic Catalysts -- 3.1.1.3 Supported Catalysts -- 3.1.2 Heterogeneity Test -- 3.1.2.1 Recycling Test -- 3.1.3 Examples of the Application of Heterogeneous Catalysis -- 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions -- 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction -- 3.2 Conclusions -- References -- Chapter 4 -- Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs -- 4.1 Introduction -- 4.2 Lipases -- 4.2.1 Lipase- catalysed Hydrolysis of Esters -- 4.2.2 Lipase- catalysed Esterification Reactions -- 4.2.3 Lipase- catalysed Aminolysis Reactions -- 4.2.4 Lipase- catalysed Oxidation Reactions -- 4.3 Nitrilases -- 4.4 Monoamine Oxidases (MAOs) -- 4.5 Ketoreductases (KRED) -- 4.6 Monooxygenases and Baeyer-Villiger Monooxygenases (BVMO) -- 4.7 Transaminases -- 4.8 Other Enzymes and Perspectives. | |
505 | 8 | |a 7.3.1 Powder X- Ray Diffraction -- 7.3.2 Raman Spectroscopy -- 7.3.3 TRIS- XANES and Solid- State NMR -- 7.3.4 Temperature Measurement during Milling -- 7.4 Organic Synthesis Under Mechanochemical Conditions -- 7.4.1 Metal Catalysis -- 7.4.2 Organocatalysis -- 7.4.3 Photocatalysis -- References -- Chapter 8 -- Sustainable Activation of Chemical Substrates Under Sonochemical Conditions -- 8.1 Introduction -- 8.2 Sonochemistry, a Chemistry based on Power Ultrasound -- 8.2.1 Acoustic Cavitation and Associated Effects -- 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation -- 8.2.2.1 Ultrasonic Frequency -- 8.2.2.2 Dissipated Ultrasonic Power -- 8.2.2.3 Hydrostatic Pressure -- 8.2.2.4 Temperature -- 8.2.2.5 Nature of the Solvent -- 8.2.2.6 Dissolved Gas -- 8.2.2.7 External Pressure -- 8.2.2.8 Ultrasonic Intensity -- 8.2.3 Mode of Irradiation and Sonoreactors -- 8.2.3.1 Modes of Irradiation -- 8.2.3.2 Equipment -- 8.2.3.3 Characterization of the Ultrasonic Parameters -- 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities -- 8.3.1 Green Organic Sonochemistry -- 8.3.2 Cases Studies in Organic Sonochemistry -- 8.3.2.1 Examples of Oxidation Reactions -- 8.3.2.2 Examples of Reduction Reactions -- 8.3.2.3 Examples of Fused Heterocycles -- 8.3.2.4 Examples of Organometallic Reactions -- 8.3.3 Scale- up and Industrial Applications -- 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry -- List of Abbreviations -- References -- Section 2 -- Benign Media for Organic Synthesis -- Chapter 9 -- Biomass- derived Solvents -- 9.1 Introduction -- 9.2 Methyltetrahydrofuran (2- MeTHF) -- 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions -- 9.2.2 2- MeTHF as a Solvent in Biotransformations -- 9.3 Gamma- Valerolactone (GVL) -- 9.3.1 GVL as a Solvent in Organic Chemistry Reactions. | |
505 | 8 | |a 9.3.2 GVL as a Solvent in Biotransformations -- 9.4 Dihydrolevoglucosenone -- 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions -- 9.4.2 Dihydrolevoglucosenone in Biotransformations -- 9.5 Glycerol and Glycerol- based Solvents (GBs) -- 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions -- 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations -- References -- Chapter 10 -- Supercritical Solvents -- 10.1 Definition of Supercritical State -- 10.2 Properties of Supercritical Fluids as Pure Substances -- 10.2.1 SCFs in Practice -- 10.3 Tailoring SCF Properties -- 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis -- 10.3.2 Olefin Metathesis Using scCO2 as a Solvent -- 10.3.3 Platform Chemicals from Glucose in SCW -- 10.3.4 Biodiesel Production in SC- Methanol/Ethanol -- 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation -- References -- Chapter 11 -- Challenges of Using Fluorous Solvents for Greener Organic Synthesis -- 11.1 Introduction -- 11.2 Perfluorinated Solvents -- 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers -- 11.2.2 Organic Synthesis Using Perfluorinated Solvents -- 11.3 Fluorous- organic Hybrid Solvents -- 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents -- 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents -- 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane -- 11.4.1 Concept of PV Methods -- 11.4.2 PV Method Accompanied by Photo Irradiation -- 11.4.3 Grignard- type Reaction Using the PV Method -- 11.4.4 PV Method Accompanied by in situ Gas Evolution -- 11.5 Conclusions -- References -- Chapter 12 -- Ionic Liquids and Deep Eutectic Solvents -- 12.1 A Very Short Introduction. | |
505 | 8 | |a 12.2 Ionic Liquids -- 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey -- 12.2.2 Sustainable Physical Properties -- 12.2.3 Solvent Intrinsic Catalysis -- 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts -- 12.2.5 How Sustainable are ILs -- 12.3 Deep Eutectic Solvents -- 12.3.1 Deep Eutectic Solvents (DESs): General Overview -- 12.3.2 Preparation of DESs and Overview of their Properties and Applications -- 12.3.3 DESs in Organic Synthesis -- 12.3.3.1 Consecutive Reactions in DESs -- 12.3.3.2 Unveiling the Role Played by the DES -- 12.3.3.3 The Case of Reactive DESs -- 12.3.3.4 Grignard and Organolithium Chemistry in DESs -- 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated -- 12.3.4 Future Perspective -- 12.4 Author Credits -- References -- Chapter 13 -- Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures -- 13.1 Introduction -- 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents -- 13.2.1 Organic Synthesis Exclusively Performed in Water -- 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System -- 13.3 Surfactants as an Additive for Chemistry in Water -- 13.3.1 Anionic Surfactants -- 13.3.2 Amphiphilic Surfactants -- 13.4 Use of Aqueous Reaction Media for Industrial Applications -- 13.5 Academic Incorporation of Chemistry in Water -- 13.6 Conclusion -- References -- Chapter 14 -- Solvent- free Conditions -- 14.1 Introduction -- 14.2 Solvent- free Organic Reactions -- 14.2.1 Neat Reactions -- 14.2.2 MOF- catalysed Reactions -- 14.3 Solid- state Reactions -- 14.3.1 Thermal Solid- state Reactions -- 14.3.2 Topochemical Reactions -- 14.3.3 Solid- state Melt Reactions -- 14.3.4 Mechanochemical Reactions -- 14.3.5 Photochemical Reactions -- 14.4 Asymmetric Reactions -- 14.5 Continuous Flow Twin- Screw Extrusion. | |
520 | |a Sustainable Organic Synthesis brings together the expertise of leading scientists in green chemistry, providing a useful resource of techniques and approaches for academic researchers and synthetic chemistry practitioners. | ||
650 | 0 | |a Organic compounds |x Synthesis. |0 http://id.loc.gov/authorities/subjects/sh85023025 | |
650 | 0 | |a Green chemistry. |0 http://id.loc.gov/authorities/subjects/sh99011713 | |
650 | 6 | |a Composés organiques |x Synthèse. | |
650 | 6 | |a Chimie verte. | |
650 | 7 | |a Green chemistry |2 fast | |
650 | 7 | |a Organic compounds |x Synthesis |2 fast | |
700 | 1 | |a Protti, Stefano, |d 1979- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJxCtFg4jcTq8hYYYgMkjC |0 http://id.loc.gov/authorities/names/n2018048984 | |
700 | 1 | |a Palmieri, Alessandro |c (Professor of chemistry), |e editor. |0 http://id.loc.gov/authorities/names/no2023022080 | |
758 | |i has work: |a Sustainable organic synthesis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFDrQVFGWVcpGfV9TtX9cK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Sustainable organic synthesis. |z 9781839162039 |z 1839162031 |w (OCoLC)1250514343 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3092696 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 3092696 | ||
938 | |a YBP Library Services |b YANK |n 17712215 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1282257394 |
---|---|
_version_ | 1816882552201281536 |
adam_text | |
any_adam_object | |
author2 | Protti, Stefano, 1979- Palmieri, Alessandro (Professor of chemistry) |
author2_role | edt edt |
author2_variant | s p sp a p ap |
author_GND | http://id.loc.gov/authorities/names/n2018048984 http://id.loc.gov/authorities/names/no2023022080 |
author_facet | Protti, Stefano, 1979- Palmieri, Alessandro (Professor of chemistry) |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD262 |
callnumber-raw | QD262 |
callnumber-search | QD262 |
callnumber-sort | QD 3262 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Cover -- Sustainable Organic Synthesis: Tools and Strategies -- Preface -- Biographies -- Contents -- Section 1 -- Activation of Chemical Substrates under Sustainable Conditions -- Chapter 1 -- Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics -- 1.1 Introduction -- 1.2 Syntheses of Pretomanid -- 1.3 Sustainability Index -- 1.4 Ranking Analysis of the Pretomanid Synthesis Plans -- 1.5 Conclusion -- References -- Chapter 2 -- Homogeneous Catalysis -- 2.1 Introduction -- 2.2 Catalysis -- 2.3 Homogeneous Catalysis -- 2.4 Model Examples -- 2.4.1 Hydrogenation Reactions -- 2.4.2 C-C Bond Forming Reactions -- 2.4.3 C-Heteroatom Bond Forming Reactions -- 2.4.4 Polymerisation Reactions -- 2.5 Conclusions -- References -- Chapter 3 -- Heterogeneous Catalysis -- 3.1 Basic Concepts from a Historical Perspective -- 3.1.1 Heterogeneous Catalysts -- 3.1.1.1 Bulk Inorganic Catalysts -- 3.1.1.2 Bulk Organic Catalysts -- 3.1.1.3 Supported Catalysts -- 3.1.2 Heterogeneity Test -- 3.1.2.1 Recycling Test -- 3.1.3 Examples of the Application of Heterogeneous Catalysis -- 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions -- 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction -- 3.2 Conclusions -- References -- Chapter 4 -- Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs -- 4.1 Introduction -- 4.2 Lipases -- 4.2.1 Lipase- catalysed Hydrolysis of Esters -- 4.2.2 Lipase- catalysed Esterification Reactions -- 4.2.3 Lipase- catalysed Aminolysis Reactions -- 4.2.4 Lipase- catalysed Oxidation Reactions -- 4.3 Nitrilases -- 4.4 Monoamine Oxidases (MAOs) -- 4.5 Ketoreductases (KRED) -- 4.6 Monooxygenases and Baeyer-Villiger Monooxygenases (BVMO) -- 4.7 Transaminases -- 4.8 Other Enzymes and Perspectives. 7.3.1 Powder X- Ray Diffraction -- 7.3.2 Raman Spectroscopy -- 7.3.3 TRIS- XANES and Solid- State NMR -- 7.3.4 Temperature Measurement during Milling -- 7.4 Organic Synthesis Under Mechanochemical Conditions -- 7.4.1 Metal Catalysis -- 7.4.2 Organocatalysis -- 7.4.3 Photocatalysis -- References -- Chapter 8 -- Sustainable Activation of Chemical Substrates Under Sonochemical Conditions -- 8.1 Introduction -- 8.2 Sonochemistry, a Chemistry based on Power Ultrasound -- 8.2.1 Acoustic Cavitation and Associated Effects -- 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation -- 8.2.2.1 Ultrasonic Frequency -- 8.2.2.2 Dissipated Ultrasonic Power -- 8.2.2.3 Hydrostatic Pressure -- 8.2.2.4 Temperature -- 8.2.2.5 Nature of the Solvent -- 8.2.2.6 Dissolved Gas -- 8.2.2.7 External Pressure -- 8.2.2.8 Ultrasonic Intensity -- 8.2.3 Mode of Irradiation and Sonoreactors -- 8.2.3.1 Modes of Irradiation -- 8.2.3.2 Equipment -- 8.2.3.3 Characterization of the Ultrasonic Parameters -- 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities -- 8.3.1 Green Organic Sonochemistry -- 8.3.2 Cases Studies in Organic Sonochemistry -- 8.3.2.1 Examples of Oxidation Reactions -- 8.3.2.2 Examples of Reduction Reactions -- 8.3.2.3 Examples of Fused Heterocycles -- 8.3.2.4 Examples of Organometallic Reactions -- 8.3.3 Scale- up and Industrial Applications -- 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry -- List of Abbreviations -- References -- Section 2 -- Benign Media for Organic Synthesis -- Chapter 9 -- Biomass- derived Solvents -- 9.1 Introduction -- 9.2 Methyltetrahydrofuran (2- MeTHF) -- 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions -- 9.2.2 2- MeTHF as a Solvent in Biotransformations -- 9.3 Gamma- Valerolactone (GVL) -- 9.3.1 GVL as a Solvent in Organic Chemistry Reactions. 9.3.2 GVL as a Solvent in Biotransformations -- 9.4 Dihydrolevoglucosenone -- 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions -- 9.4.2 Dihydrolevoglucosenone in Biotransformations -- 9.5 Glycerol and Glycerol- based Solvents (GBs) -- 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions -- 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations -- References -- Chapter 10 -- Supercritical Solvents -- 10.1 Definition of Supercritical State -- 10.2 Properties of Supercritical Fluids as Pure Substances -- 10.2.1 SCFs in Practice -- 10.3 Tailoring SCF Properties -- 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis -- 10.3.2 Olefin Metathesis Using scCO2 as a Solvent -- 10.3.3 Platform Chemicals from Glucose in SCW -- 10.3.4 Biodiesel Production in SC- Methanol/Ethanol -- 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation -- References -- Chapter 11 -- Challenges of Using Fluorous Solvents for Greener Organic Synthesis -- 11.1 Introduction -- 11.2 Perfluorinated Solvents -- 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers -- 11.2.2 Organic Synthesis Using Perfluorinated Solvents -- 11.3 Fluorous- organic Hybrid Solvents -- 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents -- 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents -- 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane -- 11.4.1 Concept of PV Methods -- 11.4.2 PV Method Accompanied by Photo Irradiation -- 11.4.3 Grignard- type Reaction Using the PV Method -- 11.4.4 PV Method Accompanied by in situ Gas Evolution -- 11.5 Conclusions -- References -- Chapter 12 -- Ionic Liquids and Deep Eutectic Solvents -- 12.1 A Very Short Introduction. 12.2 Ionic Liquids -- 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey -- 12.2.2 Sustainable Physical Properties -- 12.2.3 Solvent Intrinsic Catalysis -- 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts -- 12.2.5 How Sustainable are ILs -- 12.3 Deep Eutectic Solvents -- 12.3.1 Deep Eutectic Solvents (DESs): General Overview -- 12.3.2 Preparation of DESs and Overview of their Properties and Applications -- 12.3.3 DESs in Organic Synthesis -- 12.3.3.1 Consecutive Reactions in DESs -- 12.3.3.2 Unveiling the Role Played by the DES -- 12.3.3.3 The Case of Reactive DESs -- 12.3.3.4 Grignard and Organolithium Chemistry in DESs -- 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated -- 12.3.4 Future Perspective -- 12.4 Author Credits -- References -- Chapter 13 -- Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures -- 13.1 Introduction -- 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents -- 13.2.1 Organic Synthesis Exclusively Performed in Water -- 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System -- 13.3 Surfactants as an Additive for Chemistry in Water -- 13.3.1 Anionic Surfactants -- 13.3.2 Amphiphilic Surfactants -- 13.4 Use of Aqueous Reaction Media for Industrial Applications -- 13.5 Academic Incorporation of Chemistry in Water -- 13.6 Conclusion -- References -- Chapter 14 -- Solvent- free Conditions -- 14.1 Introduction -- 14.2 Solvent- free Organic Reactions -- 14.2.1 Neat Reactions -- 14.2.2 MOF- catalysed Reactions -- 14.3 Solid- state Reactions -- 14.3.1 Thermal Solid- state Reactions -- 14.3.2 Topochemical Reactions -- 14.3.3 Solid- state Melt Reactions -- 14.3.4 Mechanochemical Reactions -- 14.3.5 Photochemical Reactions -- 14.4 Asymmetric Reactions -- 14.5 Continuous Flow Twin- Screw Extrusion. |
ctrlnum | (OCoLC)1282257394 |
dewey-full | 547.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.2 |
dewey-search | 547.2 |
dewey-sort | 3547.2 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10265cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1282257394</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">211103s2022 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKRSC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UKRSC</subfield><subfield code="d">UIU</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ORZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">DXU</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839164842</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1839164840</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1839162031</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781839162039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1282257394</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">6354:6194</subfield><subfield code="b">Royal Society of Chemistry</subfield><subfield code="n">http://www.rsc.org/spr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD262</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PNN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">RNU</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">547.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Sustainable organic synthesis :</subfield><subfield code="b">tools and strategies /</subfield><subfield code="c">edited by Stefano Protti, Alessandro Palmieri.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK :</subfield><subfield code="b">Royal Society of Chemistry,</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on February 24, 2022)</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Sustainable Organic Synthesis: Tools and Strategies -- Preface -- Biographies -- Contents -- Section 1 -- Activation of Chemical Substrates under Sustainable Conditions -- Chapter 1 -- Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics -- 1.1 Introduction -- 1.2 Syntheses of Pretomanid -- 1.3 Sustainability Index -- 1.4 Ranking Analysis of the Pretomanid Synthesis Plans -- 1.5 Conclusion -- References -- Chapter 2 -- Homogeneous Catalysis -- 2.1 Introduction -- 2.2 Catalysis -- 2.3 Homogeneous Catalysis -- 2.4 Model Examples -- 2.4.1 Hydrogenation Reactions -- 2.4.2 C-C Bond Forming Reactions -- 2.4.3 C-Heteroatom Bond Forming Reactions -- 2.4.4 Polymerisation Reactions -- 2.5 Conclusions -- References -- Chapter 3 -- Heterogeneous Catalysis -- 3.1 Basic Concepts from a Historical Perspective -- 3.1.1 Heterogeneous Catalysts -- 3.1.1.1 Bulk Inorganic Catalysts -- 3.1.1.2 Bulk Organic Catalysts -- 3.1.1.3 Supported Catalysts -- 3.1.2 Heterogeneity Test -- 3.1.2.1 Recycling Test -- 3.1.3 Examples of the Application of Heterogeneous Catalysis -- 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions -- 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction -- 3.2 Conclusions -- References -- Chapter 4 -- Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs -- 4.1 Introduction -- 4.2 Lipases -- 4.2.1 Lipase- catalysed Hydrolysis of Esters -- 4.2.2 Lipase- catalysed Esterification Reactions -- 4.2.3 Lipase- catalysed Aminolysis Reactions -- 4.2.4 Lipase- catalysed Oxidation Reactions -- 4.3 Nitrilases -- 4.4 Monoamine Oxidases (MAOs) -- 4.5 Ketoreductases (KRED) -- 4.6 Monooxygenases and Baeyer-Villiger Monooxygenases (BVMO) -- 4.7 Transaminases -- 4.8 Other Enzymes and Perspectives.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.3.1 Powder X- Ray Diffraction -- 7.3.2 Raman Spectroscopy -- 7.3.3 TRIS- XANES and Solid- State NMR -- 7.3.4 Temperature Measurement during Milling -- 7.4 Organic Synthesis Under Mechanochemical Conditions -- 7.4.1 Metal Catalysis -- 7.4.2 Organocatalysis -- 7.4.3 Photocatalysis -- References -- Chapter 8 -- Sustainable Activation of Chemical Substrates Under Sonochemical Conditions -- 8.1 Introduction -- 8.2 Sonochemistry, a Chemistry based on Power Ultrasound -- 8.2.1 Acoustic Cavitation and Associated Effects -- 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation -- 8.2.2.1 Ultrasonic Frequency -- 8.2.2.2 Dissipated Ultrasonic Power -- 8.2.2.3 Hydrostatic Pressure -- 8.2.2.4 Temperature -- 8.2.2.5 Nature of the Solvent -- 8.2.2.6 Dissolved Gas -- 8.2.2.7 External Pressure -- 8.2.2.8 Ultrasonic Intensity -- 8.2.3 Mode of Irradiation and Sonoreactors -- 8.2.3.1 Modes of Irradiation -- 8.2.3.2 Equipment -- 8.2.3.3 Characterization of the Ultrasonic Parameters -- 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities -- 8.3.1 Green Organic Sonochemistry -- 8.3.2 Cases Studies in Organic Sonochemistry -- 8.3.2.1 Examples of Oxidation Reactions -- 8.3.2.2 Examples of Reduction Reactions -- 8.3.2.3 Examples of Fused Heterocycles -- 8.3.2.4 Examples of Organometallic Reactions -- 8.3.3 Scale- up and Industrial Applications -- 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry -- List of Abbreviations -- References -- Section 2 -- Benign Media for Organic Synthesis -- Chapter 9 -- Biomass- derived Solvents -- 9.1 Introduction -- 9.2 Methyltetrahydrofuran (2- MeTHF) -- 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions -- 9.2.2 2- MeTHF as a Solvent in Biotransformations -- 9.3 Gamma- Valerolactone (GVL) -- 9.3.1 GVL as a Solvent in Organic Chemistry Reactions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.2 GVL as a Solvent in Biotransformations -- 9.4 Dihydrolevoglucosenone -- 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions -- 9.4.2 Dihydrolevoglucosenone in Biotransformations -- 9.5 Glycerol and Glycerol- based Solvents (GBs) -- 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions -- 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations -- References -- Chapter 10 -- Supercritical Solvents -- 10.1 Definition of Supercritical State -- 10.2 Properties of Supercritical Fluids as Pure Substances -- 10.2.1 SCFs in Practice -- 10.3 Tailoring SCF Properties -- 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis -- 10.3.2 Olefin Metathesis Using scCO2 as a Solvent -- 10.3.3 Platform Chemicals from Glucose in SCW -- 10.3.4 Biodiesel Production in SC- Methanol/Ethanol -- 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation -- References -- Chapter 11 -- Challenges of Using Fluorous Solvents for Greener Organic Synthesis -- 11.1 Introduction -- 11.2 Perfluorinated Solvents -- 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers -- 11.2.2 Organic Synthesis Using Perfluorinated Solvents -- 11.3 Fluorous- organic Hybrid Solvents -- 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents -- 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents -- 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane -- 11.4.1 Concept of PV Methods -- 11.4.2 PV Method Accompanied by Photo Irradiation -- 11.4.3 Grignard- type Reaction Using the PV Method -- 11.4.4 PV Method Accompanied by in situ Gas Evolution -- 11.5 Conclusions -- References -- Chapter 12 -- Ionic Liquids and Deep Eutectic Solvents -- 12.1 A Very Short Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.2 Ionic Liquids -- 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey -- 12.2.2 Sustainable Physical Properties -- 12.2.3 Solvent Intrinsic Catalysis -- 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts -- 12.2.5 How Sustainable are ILs -- 12.3 Deep Eutectic Solvents -- 12.3.1 Deep Eutectic Solvents (DESs): General Overview -- 12.3.2 Preparation of DESs and Overview of their Properties and Applications -- 12.3.3 DESs in Organic Synthesis -- 12.3.3.1 Consecutive Reactions in DESs -- 12.3.3.2 Unveiling the Role Played by the DES -- 12.3.3.3 The Case of Reactive DESs -- 12.3.3.4 Grignard and Organolithium Chemistry in DESs -- 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated -- 12.3.4 Future Perspective -- 12.4 Author Credits -- References -- Chapter 13 -- Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures -- 13.1 Introduction -- 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents -- 13.2.1 Organic Synthesis Exclusively Performed in Water -- 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System -- 13.3 Surfactants as an Additive for Chemistry in Water -- 13.3.1 Anionic Surfactants -- 13.3.2 Amphiphilic Surfactants -- 13.4 Use of Aqueous Reaction Media for Industrial Applications -- 13.5 Academic Incorporation of Chemistry in Water -- 13.6 Conclusion -- References -- Chapter 14 -- Solvent- free Conditions -- 14.1 Introduction -- 14.2 Solvent- free Organic Reactions -- 14.2.1 Neat Reactions -- 14.2.2 MOF- catalysed Reactions -- 14.3 Solid- state Reactions -- 14.3.1 Thermal Solid- state Reactions -- 14.3.2 Topochemical Reactions -- 14.3.3 Solid- state Melt Reactions -- 14.3.4 Mechanochemical Reactions -- 14.3.5 Photochemical Reactions -- 14.4 Asymmetric Reactions -- 14.5 Continuous Flow Twin- Screw Extrusion.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sustainable Organic Synthesis brings together the expertise of leading scientists in green chemistry, providing a useful resource of techniques and approaches for academic researchers and synthetic chemistry practitioners.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Organic compounds</subfield><subfield code="x">Synthesis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85023025</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Green chemistry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99011713</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Composés organiques</subfield><subfield code="x">Synthèse.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chimie verte.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Green chemistry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Organic compounds</subfield><subfield code="x">Synthesis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Protti, Stefano,</subfield><subfield code="d">1979-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxCtFg4jcTq8hYYYgMkjC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018048984</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmieri, Alessandro</subfield><subfield code="c">(Professor of chemistry),</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2023022080</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Sustainable organic synthesis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFDrQVFGWVcpGfV9TtX9cK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Sustainable organic synthesis.</subfield><subfield code="z">9781839162039</subfield><subfield code="z">1839162031</subfield><subfield code="w">(OCoLC)1250514343</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3092696</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3092696</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">17712215</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1282257394 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:30:25Z |
institution | BVB |
isbn | 9781839164842 1839164840 |
language | English |
oclc_num | 1282257394 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Royal Society of Chemistry, |
record_format | marc |
spelling | Sustainable organic synthesis : tools and strategies / edited by Stefano Protti, Alessandro Palmieri. London, UK : Royal Society of Chemistry, [2022] 1 online resource : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Description based on online resource; title from digital title page (viewed on February 24, 2022) Cover -- Sustainable Organic Synthesis: Tools and Strategies -- Preface -- Biographies -- Contents -- Section 1 -- Activation of Chemical Substrates under Sustainable Conditions -- Chapter 1 -- Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics -- 1.1 Introduction -- 1.2 Syntheses of Pretomanid -- 1.3 Sustainability Index -- 1.4 Ranking Analysis of the Pretomanid Synthesis Plans -- 1.5 Conclusion -- References -- Chapter 2 -- Homogeneous Catalysis -- 2.1 Introduction -- 2.2 Catalysis -- 2.3 Homogeneous Catalysis -- 2.4 Model Examples -- 2.4.1 Hydrogenation Reactions -- 2.4.2 C-C Bond Forming Reactions -- 2.4.3 C-Heteroatom Bond Forming Reactions -- 2.4.4 Polymerisation Reactions -- 2.5 Conclusions -- References -- Chapter 3 -- Heterogeneous Catalysis -- 3.1 Basic Concepts from a Historical Perspective -- 3.1.1 Heterogeneous Catalysts -- 3.1.1.1 Bulk Inorganic Catalysts -- 3.1.1.2 Bulk Organic Catalysts -- 3.1.1.3 Supported Catalysts -- 3.1.2 Heterogeneity Test -- 3.1.2.1 Recycling Test -- 3.1.3 Examples of the Application of Heterogeneous Catalysis -- 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions -- 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction -- 3.2 Conclusions -- References -- Chapter 4 -- Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs -- 4.1 Introduction -- 4.2 Lipases -- 4.2.1 Lipase- catalysed Hydrolysis of Esters -- 4.2.2 Lipase- catalysed Esterification Reactions -- 4.2.3 Lipase- catalysed Aminolysis Reactions -- 4.2.4 Lipase- catalysed Oxidation Reactions -- 4.3 Nitrilases -- 4.4 Monoamine Oxidases (MAOs) -- 4.5 Ketoreductases (KRED) -- 4.6 Monooxygenases and Baeyer-Villiger Monooxygenases (BVMO) -- 4.7 Transaminases -- 4.8 Other Enzymes and Perspectives. 7.3.1 Powder X- Ray Diffraction -- 7.3.2 Raman Spectroscopy -- 7.3.3 TRIS- XANES and Solid- State NMR -- 7.3.4 Temperature Measurement during Milling -- 7.4 Organic Synthesis Under Mechanochemical Conditions -- 7.4.1 Metal Catalysis -- 7.4.2 Organocatalysis -- 7.4.3 Photocatalysis -- References -- Chapter 8 -- Sustainable Activation of Chemical Substrates Under Sonochemical Conditions -- 8.1 Introduction -- 8.2 Sonochemistry, a Chemistry based on Power Ultrasound -- 8.2.1 Acoustic Cavitation and Associated Effects -- 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation -- 8.2.2.1 Ultrasonic Frequency -- 8.2.2.2 Dissipated Ultrasonic Power -- 8.2.2.3 Hydrostatic Pressure -- 8.2.2.4 Temperature -- 8.2.2.5 Nature of the Solvent -- 8.2.2.6 Dissolved Gas -- 8.2.2.7 External Pressure -- 8.2.2.8 Ultrasonic Intensity -- 8.2.3 Mode of Irradiation and Sonoreactors -- 8.2.3.1 Modes of Irradiation -- 8.2.3.2 Equipment -- 8.2.3.3 Characterization of the Ultrasonic Parameters -- 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities -- 8.3.1 Green Organic Sonochemistry -- 8.3.2 Cases Studies in Organic Sonochemistry -- 8.3.2.1 Examples of Oxidation Reactions -- 8.3.2.2 Examples of Reduction Reactions -- 8.3.2.3 Examples of Fused Heterocycles -- 8.3.2.4 Examples of Organometallic Reactions -- 8.3.3 Scale- up and Industrial Applications -- 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry -- List of Abbreviations -- References -- Section 2 -- Benign Media for Organic Synthesis -- Chapter 9 -- Biomass- derived Solvents -- 9.1 Introduction -- 9.2 Methyltetrahydrofuran (2- MeTHF) -- 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions -- 9.2.2 2- MeTHF as a Solvent in Biotransformations -- 9.3 Gamma- Valerolactone (GVL) -- 9.3.1 GVL as a Solvent in Organic Chemistry Reactions. 9.3.2 GVL as a Solvent in Biotransformations -- 9.4 Dihydrolevoglucosenone -- 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions -- 9.4.2 Dihydrolevoglucosenone in Biotransformations -- 9.5 Glycerol and Glycerol- based Solvents (GBs) -- 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions -- 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations -- References -- Chapter 10 -- Supercritical Solvents -- 10.1 Definition of Supercritical State -- 10.2 Properties of Supercritical Fluids as Pure Substances -- 10.2.1 SCFs in Practice -- 10.3 Tailoring SCF Properties -- 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis -- 10.3.2 Olefin Metathesis Using scCO2 as a Solvent -- 10.3.3 Platform Chemicals from Glucose in SCW -- 10.3.4 Biodiesel Production in SC- Methanol/Ethanol -- 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation -- References -- Chapter 11 -- Challenges of Using Fluorous Solvents for Greener Organic Synthesis -- 11.1 Introduction -- 11.2 Perfluorinated Solvents -- 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers -- 11.2.2 Organic Synthesis Using Perfluorinated Solvents -- 11.3 Fluorous- organic Hybrid Solvents -- 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents -- 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents -- 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane -- 11.4.1 Concept of PV Methods -- 11.4.2 PV Method Accompanied by Photo Irradiation -- 11.4.3 Grignard- type Reaction Using the PV Method -- 11.4.4 PV Method Accompanied by in situ Gas Evolution -- 11.5 Conclusions -- References -- Chapter 12 -- Ionic Liquids and Deep Eutectic Solvents -- 12.1 A Very Short Introduction. 12.2 Ionic Liquids -- 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey -- 12.2.2 Sustainable Physical Properties -- 12.2.3 Solvent Intrinsic Catalysis -- 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts -- 12.2.5 How Sustainable are ILs -- 12.3 Deep Eutectic Solvents -- 12.3.1 Deep Eutectic Solvents (DESs): General Overview -- 12.3.2 Preparation of DESs and Overview of their Properties and Applications -- 12.3.3 DESs in Organic Synthesis -- 12.3.3.1 Consecutive Reactions in DESs -- 12.3.3.2 Unveiling the Role Played by the DES -- 12.3.3.3 The Case of Reactive DESs -- 12.3.3.4 Grignard and Organolithium Chemistry in DESs -- 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated -- 12.3.4 Future Perspective -- 12.4 Author Credits -- References -- Chapter 13 -- Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures -- 13.1 Introduction -- 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents -- 13.2.1 Organic Synthesis Exclusively Performed in Water -- 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System -- 13.3 Surfactants as an Additive for Chemistry in Water -- 13.3.1 Anionic Surfactants -- 13.3.2 Amphiphilic Surfactants -- 13.4 Use of Aqueous Reaction Media for Industrial Applications -- 13.5 Academic Incorporation of Chemistry in Water -- 13.6 Conclusion -- References -- Chapter 14 -- Solvent- free Conditions -- 14.1 Introduction -- 14.2 Solvent- free Organic Reactions -- 14.2.1 Neat Reactions -- 14.2.2 MOF- catalysed Reactions -- 14.3 Solid- state Reactions -- 14.3.1 Thermal Solid- state Reactions -- 14.3.2 Topochemical Reactions -- 14.3.3 Solid- state Melt Reactions -- 14.3.4 Mechanochemical Reactions -- 14.3.5 Photochemical Reactions -- 14.4 Asymmetric Reactions -- 14.5 Continuous Flow Twin- Screw Extrusion. Sustainable Organic Synthesis brings together the expertise of leading scientists in green chemistry, providing a useful resource of techniques and approaches for academic researchers and synthetic chemistry practitioners. Organic compounds Synthesis. http://id.loc.gov/authorities/subjects/sh85023025 Green chemistry. http://id.loc.gov/authorities/subjects/sh99011713 Composés organiques Synthèse. Chimie verte. Green chemistry fast Organic compounds Synthesis fast Protti, Stefano, 1979- editor. https://id.oclc.org/worldcat/entity/E39PBJxCtFg4jcTq8hYYYgMkjC http://id.loc.gov/authorities/names/n2018048984 Palmieri, Alessandro (Professor of chemistry), editor. http://id.loc.gov/authorities/names/no2023022080 has work: Sustainable organic synthesis (Text) https://id.oclc.org/worldcat/entity/E39PCFDrQVFGWVcpGfV9TtX9cK https://id.oclc.org/worldcat/ontology/hasWork Print version: Sustainable organic synthesis. 9781839162039 1839162031 (OCoLC)1250514343 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3092696 Volltext |
spellingShingle | Sustainable organic synthesis : tools and strategies / Cover -- Sustainable Organic Synthesis: Tools and Strategies -- Preface -- Biographies -- Contents -- Section 1 -- Activation of Chemical Substrates under Sustainable Conditions -- Chapter 1 -- Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics -- 1.1 Introduction -- 1.2 Syntheses of Pretomanid -- 1.3 Sustainability Index -- 1.4 Ranking Analysis of the Pretomanid Synthesis Plans -- 1.5 Conclusion -- References -- Chapter 2 -- Homogeneous Catalysis -- 2.1 Introduction -- 2.2 Catalysis -- 2.3 Homogeneous Catalysis -- 2.4 Model Examples -- 2.4.1 Hydrogenation Reactions -- 2.4.2 C-C Bond Forming Reactions -- 2.4.3 C-Heteroatom Bond Forming Reactions -- 2.4.4 Polymerisation Reactions -- 2.5 Conclusions -- References -- Chapter 3 -- Heterogeneous Catalysis -- 3.1 Basic Concepts from a Historical Perspective -- 3.1.1 Heterogeneous Catalysts -- 3.1.1.1 Bulk Inorganic Catalysts -- 3.1.1.2 Bulk Organic Catalysts -- 3.1.1.3 Supported Catalysts -- 3.1.2 Heterogeneity Test -- 3.1.2.1 Recycling Test -- 3.1.3 Examples of the Application of Heterogeneous Catalysis -- 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions -- 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction -- 3.2 Conclusions -- References -- Chapter 4 -- Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs -- 4.1 Introduction -- 4.2 Lipases -- 4.2.1 Lipase- catalysed Hydrolysis of Esters -- 4.2.2 Lipase- catalysed Esterification Reactions -- 4.2.3 Lipase- catalysed Aminolysis Reactions -- 4.2.4 Lipase- catalysed Oxidation Reactions -- 4.3 Nitrilases -- 4.4 Monoamine Oxidases (MAOs) -- 4.5 Ketoreductases (KRED) -- 4.6 Monooxygenases and Baeyer-Villiger Monooxygenases (BVMO) -- 4.7 Transaminases -- 4.8 Other Enzymes and Perspectives. 7.3.1 Powder X- Ray Diffraction -- 7.3.2 Raman Spectroscopy -- 7.3.3 TRIS- XANES and Solid- State NMR -- 7.3.4 Temperature Measurement during Milling -- 7.4 Organic Synthesis Under Mechanochemical Conditions -- 7.4.1 Metal Catalysis -- 7.4.2 Organocatalysis -- 7.4.3 Photocatalysis -- References -- Chapter 8 -- Sustainable Activation of Chemical Substrates Under Sonochemical Conditions -- 8.1 Introduction -- 8.2 Sonochemistry, a Chemistry based on Power Ultrasound -- 8.2.1 Acoustic Cavitation and Associated Effects -- 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation -- 8.2.2.1 Ultrasonic Frequency -- 8.2.2.2 Dissipated Ultrasonic Power -- 8.2.2.3 Hydrostatic Pressure -- 8.2.2.4 Temperature -- 8.2.2.5 Nature of the Solvent -- 8.2.2.6 Dissolved Gas -- 8.2.2.7 External Pressure -- 8.2.2.8 Ultrasonic Intensity -- 8.2.3 Mode of Irradiation and Sonoreactors -- 8.2.3.1 Modes of Irradiation -- 8.2.3.2 Equipment -- 8.2.3.3 Characterization of the Ultrasonic Parameters -- 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities -- 8.3.1 Green Organic Sonochemistry -- 8.3.2 Cases Studies in Organic Sonochemistry -- 8.3.2.1 Examples of Oxidation Reactions -- 8.3.2.2 Examples of Reduction Reactions -- 8.3.2.3 Examples of Fused Heterocycles -- 8.3.2.4 Examples of Organometallic Reactions -- 8.3.3 Scale- up and Industrial Applications -- 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry -- List of Abbreviations -- References -- Section 2 -- Benign Media for Organic Synthesis -- Chapter 9 -- Biomass- derived Solvents -- 9.1 Introduction -- 9.2 Methyltetrahydrofuran (2- MeTHF) -- 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions -- 9.2.2 2- MeTHF as a Solvent in Biotransformations -- 9.3 Gamma- Valerolactone (GVL) -- 9.3.1 GVL as a Solvent in Organic Chemistry Reactions. 9.3.2 GVL as a Solvent in Biotransformations -- 9.4 Dihydrolevoglucosenone -- 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions -- 9.4.2 Dihydrolevoglucosenone in Biotransformations -- 9.5 Glycerol and Glycerol- based Solvents (GBs) -- 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions -- 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations -- References -- Chapter 10 -- Supercritical Solvents -- 10.1 Definition of Supercritical State -- 10.2 Properties of Supercritical Fluids as Pure Substances -- 10.2.1 SCFs in Practice -- 10.3 Tailoring SCF Properties -- 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis -- 10.3.2 Olefin Metathesis Using scCO2 as a Solvent -- 10.3.3 Platform Chemicals from Glucose in SCW -- 10.3.4 Biodiesel Production in SC- Methanol/Ethanol -- 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation -- References -- Chapter 11 -- Challenges of Using Fluorous Solvents for Greener Organic Synthesis -- 11.1 Introduction -- 11.2 Perfluorinated Solvents -- 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers -- 11.2.2 Organic Synthesis Using Perfluorinated Solvents -- 11.3 Fluorous- organic Hybrid Solvents -- 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents -- 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents -- 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane -- 11.4.1 Concept of PV Methods -- 11.4.2 PV Method Accompanied by Photo Irradiation -- 11.4.3 Grignard- type Reaction Using the PV Method -- 11.4.4 PV Method Accompanied by in situ Gas Evolution -- 11.5 Conclusions -- References -- Chapter 12 -- Ionic Liquids and Deep Eutectic Solvents -- 12.1 A Very Short Introduction. 12.2 Ionic Liquids -- 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey -- 12.2.2 Sustainable Physical Properties -- 12.2.3 Solvent Intrinsic Catalysis -- 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts -- 12.2.5 How Sustainable are ILs -- 12.3 Deep Eutectic Solvents -- 12.3.1 Deep Eutectic Solvents (DESs): General Overview -- 12.3.2 Preparation of DESs and Overview of their Properties and Applications -- 12.3.3 DESs in Organic Synthesis -- 12.3.3.1 Consecutive Reactions in DESs -- 12.3.3.2 Unveiling the Role Played by the DES -- 12.3.3.3 The Case of Reactive DESs -- 12.3.3.4 Grignard and Organolithium Chemistry in DESs -- 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated -- 12.3.4 Future Perspective -- 12.4 Author Credits -- References -- Chapter 13 -- Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures -- 13.1 Introduction -- 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents -- 13.2.1 Organic Synthesis Exclusively Performed in Water -- 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System -- 13.3 Surfactants as an Additive for Chemistry in Water -- 13.3.1 Anionic Surfactants -- 13.3.2 Amphiphilic Surfactants -- 13.4 Use of Aqueous Reaction Media for Industrial Applications -- 13.5 Academic Incorporation of Chemistry in Water -- 13.6 Conclusion -- References -- Chapter 14 -- Solvent- free Conditions -- 14.1 Introduction -- 14.2 Solvent- free Organic Reactions -- 14.2.1 Neat Reactions -- 14.2.2 MOF- catalysed Reactions -- 14.3 Solid- state Reactions -- 14.3.1 Thermal Solid- state Reactions -- 14.3.2 Topochemical Reactions -- 14.3.3 Solid- state Melt Reactions -- 14.3.4 Mechanochemical Reactions -- 14.3.5 Photochemical Reactions -- 14.4 Asymmetric Reactions -- 14.5 Continuous Flow Twin- Screw Extrusion. Organic compounds Synthesis. http://id.loc.gov/authorities/subjects/sh85023025 Green chemistry. http://id.loc.gov/authorities/subjects/sh99011713 Composés organiques Synthèse. Chimie verte. Green chemistry fast Organic compounds Synthesis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85023025 http://id.loc.gov/authorities/subjects/sh99011713 |
title | Sustainable organic synthesis : tools and strategies / |
title_auth | Sustainable organic synthesis : tools and strategies / |
title_exact_search | Sustainable organic synthesis : tools and strategies / |
title_full | Sustainable organic synthesis : tools and strategies / edited by Stefano Protti, Alessandro Palmieri. |
title_fullStr | Sustainable organic synthesis : tools and strategies / edited by Stefano Protti, Alessandro Palmieri. |
title_full_unstemmed | Sustainable organic synthesis : tools and strategies / edited by Stefano Protti, Alessandro Palmieri. |
title_short | Sustainable organic synthesis : |
title_sort | sustainable organic synthesis tools and strategies |
title_sub | tools and strategies / |
topic | Organic compounds Synthesis. http://id.loc.gov/authorities/subjects/sh85023025 Green chemistry. http://id.loc.gov/authorities/subjects/sh99011713 Composés organiques Synthèse. Chimie verte. Green chemistry fast Organic compounds Synthesis fast |
topic_facet | Organic compounds Synthesis. Green chemistry. Composés organiques Synthèse. Chimie verte. Green chemistry Organic compounds Synthesis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3092696 |
work_keys_str_mv | AT prottistefano sustainableorganicsynthesistoolsandstrategies AT palmierialessandro sustainableorganicsynthesistoolsandstrategies |