Understanding heat conduction /:
"The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers,
[2021]
|
Schriftenreihe: | Physics Research and Technology Ser.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | "The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described"-- |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 1536192023 9781536192025 |
Internformat
MARC
LEADER | 00000cam a22000008i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1235592700 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 210122s2021 nyu ob 001 0 eng | ||
010 | |a 2021002054 | ||
040 | |a DLC |b eng |e rda |c DLC |d YDX |d UKAHL |d EBLCP |d OCLCO |d OCLCF |d OCLCO |d N$T |d OCLCQ |d OCLCO | ||
019 | |a 1232411834 | ||
020 | |a 1536192023 | ||
020 | |a 9781536192025 |q (electronic bk.) | ||
020 | |z 9781536191820 |q (paperback) | ||
020 | |z 1536191825 | ||
035 | |a (OCoLC)1235592700 |z (OCoLC)1232411834 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QC321 |
082 | 7 | |a 536/.230151 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Understanding heat conduction / |c William Kelley, editor. |
263 | |a 2104 | ||
264 | 1 | |a New York : |b Nova Science Publishers, |c [2021] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Physics Research and Technology Ser. | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described"-- |c Provided by publisher. | ||
588 | |a Description based on print version record and CIP data provided by publisher; resource not viewed. | ||
505 | 0 | |a Intro -- Contents -- Preface -- Chapter 1 -- Cooling Kinetics in Stone Fruits -- Abstract -- General Introduction: Some Concepts in Heat Transfer -- Estimations and Applications -- Cooling/Heating Times -- Example I (from Reference [5]) -- Solution -- Modelling Thermal kinetics in stone fruits -- Mathematical Background -- Estimations and Applications -- Cooling/Heating Times -- Thermal Flow -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example II (from Reference [13]) -- Experiment Description -- Equivalent Sphere | |
505 | 8 | |a Determination of Biot Number and Thermal Diffusivity -- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2. -- Maximum Values of , -- . -- Example III. Prediction of Cooling Times in Example II -- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation -- Mathematical Background -- General Solution for Simple Geometries -- Average Value -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Summary of the Procedure -- Example IV (from Reference [48]) -- Maximum Value at the Core -- Threshold Biot Number | |
505 | 8 | |a Estimation to , -- ., , -- . and , -- ℎ. -- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature -- Mathematical Background -- Maximum Value at the Core -- Threshold Biot Number -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Other Indirect Determinations -- Heat Transfer Coefficient -- Heat Generation Constants -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example V -- References -- Chapter 2 | |
505 | 8 | |a Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder -- Abstract -- Introduction -- Methods -- System Investigated -- Governing Equations -- Material Properties -- Modeling Method Studies -- Model Validation -- Results -- Modeling Method Variations -- Case A: Time Discretization Method -- Case B: Timestep -- Case C: Upwinding -- Case D: Gradient Calculations -- Case E: Gradient Limiter -- Case F: Compressibility Effects with Model -- Case G: Standard -- Turbulence Model | |
505 | 8 | |a Case H: Non-Equilibrium Wall Treatment Turbulence Model. -- Case I: Enhanced Wall Treatment -- Turbulence Model -- Moving Cylinder Modeling Method -- Velocity = 250 m/s -- Velocity = 500 m/s -- Velocity = 1000 m/s -- Conclusion -- References -- Chapter 3 -- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods -- Abstract -- Introduction -- Basic Formulation of FS-FEM -- Basic Equation of Heat Conduction -- Basic Formulation of FS-FEM -- Nonconforming Intra-Element Field -- Auxiliary Conforming Frame Field -- Modified Variational Principle | |
650 | 0 | |a Heat |x Conduction. |0 http://id.loc.gov/authorities/subjects/sh85059759 | |
650 | 0 | |a Finite element method. |0 http://id.loc.gov/authorities/subjects/sh85048349 | |
650 | 6 | |a Chaleur |x Conduction. | |
650 | 6 | |a Méthode des éléments finis. | |
650 | 7 | |a Finite element method |2 fast | |
650 | 7 | |a Heat |x Conduction |2 fast | |
700 | 1 | |a Kelley, William |c [Editor of Nova Science Publishers] |e editor. | |
776 | 0 | 8 | |i Print version: |t Understanding heat conduction |d New York : Nova Science Publishers, [2021] |z 9781536191820 |w (DLC) 2021002053 |
830 | 0 | |a Physics Research and Technology Ser. | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2721677 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2721677 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 301893701 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6461722 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH38264843 | ||
938 | |a EBSCOhost |b EBSC |n 2721677 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1235592700 |
---|---|
_version_ | 1826942330786021376 |
adam_text | |
any_adam_object | |
author2 | Kelley, William [Editor of Nova Science Publishers] |
author2_role | edt |
author2_variant | w k wk |
author_facet | Kelley, William [Editor of Nova Science Publishers] |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC321 |
callnumber-raw | QC321 |
callnumber-search | QC321 |
callnumber-sort | QC 3321 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Intro -- Contents -- Preface -- Chapter 1 -- Cooling Kinetics in Stone Fruits -- Abstract -- General Introduction: Some Concepts in Heat Transfer -- Estimations and Applications -- Cooling/Heating Times -- Example I (from Reference [5]) -- Solution -- Modelling Thermal kinetics in stone fruits -- Mathematical Background -- Estimations and Applications -- Cooling/Heating Times -- Thermal Flow -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example II (from Reference [13]) -- Experiment Description -- Equivalent Sphere Determination of Biot Number and Thermal Diffusivity -- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2. -- Maximum Values of , -- . -- Example III. Prediction of Cooling Times in Example II -- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation -- Mathematical Background -- General Solution for Simple Geometries -- Average Value -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Summary of the Procedure -- Example IV (from Reference [48]) -- Maximum Value at the Core -- Threshold Biot Number Estimation to , -- ., , -- . and , -- ℎ. -- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature -- Mathematical Background -- Maximum Value at the Core -- Threshold Biot Number -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Other Indirect Determinations -- Heat Transfer Coefficient -- Heat Generation Constants -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example V -- References -- Chapter 2 Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder -- Abstract -- Introduction -- Methods -- System Investigated -- Governing Equations -- Material Properties -- Modeling Method Studies -- Model Validation -- Results -- Modeling Method Variations -- Case A: Time Discretization Method -- Case B: Timestep -- Case C: Upwinding -- Case D: Gradient Calculations -- Case E: Gradient Limiter -- Case F: Compressibility Effects with Model -- Case G: Standard -- Turbulence Model Case H: Non-Equilibrium Wall Treatment Turbulence Model. -- Case I: Enhanced Wall Treatment -- Turbulence Model -- Moving Cylinder Modeling Method -- Velocity = 250 m/s -- Velocity = 500 m/s -- Velocity = 1000 m/s -- Conclusion -- References -- Chapter 3 -- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods -- Abstract -- Introduction -- Basic Formulation of FS-FEM -- Basic Equation of Heat Conduction -- Basic Formulation of FS-FEM -- Nonconforming Intra-Element Field -- Auxiliary Conforming Frame Field -- Modified Variational Principle |
ctrlnum | (OCoLC)1235592700 |
dewey-full | 536/.230151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.230151 |
dewey-search | 536/.230151 |
dewey-sort | 3536 6230151 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06194cam a22006138i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1235592700</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">210122s2021 nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2021002054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1232411834</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1536192023</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781536192025</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781536191820</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1536191825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235592700</subfield><subfield code="z">(OCoLC)1232411834</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QC321</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">536/.230151</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Understanding heat conduction /</subfield><subfield code="c">William Kelley, editor.</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">2104</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers,</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Physics Research and Technology Ser.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record and CIP data provided by publisher; resource not viewed.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- Chapter 1 -- Cooling Kinetics in Stone Fruits -- Abstract -- General Introduction: Some Concepts in Heat Transfer -- Estimations and Applications -- Cooling/Heating Times -- Example I (from Reference [5]) -- Solution -- Modelling Thermal kinetics in stone fruits -- Mathematical Background -- Estimations and Applications -- Cooling/Heating Times -- Thermal Flow -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example II (from Reference [13]) -- Experiment Description -- Equivalent Sphere</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Determination of Biot Number and Thermal Diffusivity -- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2. -- Maximum Values of , -- . -- Example III. Prediction of Cooling Times in Example II -- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation -- Mathematical Background -- General Solution for Simple Geometries -- Average Value -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Summary of the Procedure -- Example IV (from Reference [48]) -- Maximum Value at the Core -- Threshold Biot Number</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Estimation to , -- ., , -- . and , -- ℎ. -- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature -- Mathematical Background -- Maximum Value at the Core -- Threshold Biot Number -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Other Indirect Determinations -- Heat Transfer Coefficient -- Heat Generation Constants -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example V -- References -- Chapter 2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder -- Abstract -- Introduction -- Methods -- System Investigated -- Governing Equations -- Material Properties -- Modeling Method Studies -- Model Validation -- Results -- Modeling Method Variations -- Case A: Time Discretization Method -- Case B: Timestep -- Case C: Upwinding -- Case D: Gradient Calculations -- Case E: Gradient Limiter -- Case F: Compressibility Effects with Model -- Case G: Standard -- Turbulence Model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Case H: Non-Equilibrium Wall Treatment Turbulence Model. -- Case I: Enhanced Wall Treatment -- Turbulence Model -- Moving Cylinder Modeling Method -- Velocity = 250 m/s -- Velocity = 500 m/s -- Velocity = 1000 m/s -- Conclusion -- References -- Chapter 3 -- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods -- Abstract -- Introduction -- Basic Formulation of FS-FEM -- Basic Equation of Heat Conduction -- Basic Formulation of FS-FEM -- Nonconforming Intra-Element Field -- Auxiliary Conforming Frame Field -- Modified Variational Principle</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Heat</subfield><subfield code="x">Conduction.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85059759</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite element method.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048349</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chaleur</subfield><subfield code="x">Conduction.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Méthode des éléments finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element method</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat</subfield><subfield code="x">Conduction</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelley, William</subfield><subfield code="c">[Editor of Nova Science Publishers]</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Understanding heat conduction</subfield><subfield code="d">New York : Nova Science Publishers, [2021]</subfield><subfield code="z">9781536191820</subfield><subfield code="w">(DLC) 2021002053</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Physics Research and Technology Ser.</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2721677</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2721677</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301893701</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6461722</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH38264843</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2721677</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1235592700 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:26:18Z |
institution | BVB |
isbn | 1536192023 9781536192025 |
language | English |
lccn | 2021002054 |
oclc_num | 1235592700 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Nova Science Publishers, |
record_format | marc |
series | Physics Research and Technology Ser. |
series2 | Physics Research and Technology Ser. |
spelling | Understanding heat conduction / William Kelley, editor. 2104 New York : Nova Science Publishers, [2021] 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Physics Research and Technology Ser. Includes bibliographical references and index. "The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described"-- Provided by publisher. Description based on print version record and CIP data provided by publisher; resource not viewed. Intro -- Contents -- Preface -- Chapter 1 -- Cooling Kinetics in Stone Fruits -- Abstract -- General Introduction: Some Concepts in Heat Transfer -- Estimations and Applications -- Cooling/Heating Times -- Example I (from Reference [5]) -- Solution -- Modelling Thermal kinetics in stone fruits -- Mathematical Background -- Estimations and Applications -- Cooling/Heating Times -- Thermal Flow -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example II (from Reference [13]) -- Experiment Description -- Equivalent Sphere Determination of Biot Number and Thermal Diffusivity -- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2. -- Maximum Values of , -- . -- Example III. Prediction of Cooling Times in Example II -- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation -- Mathematical Background -- General Solution for Simple Geometries -- Average Value -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Summary of the Procedure -- Example IV (from Reference [48]) -- Maximum Value at the Core -- Threshold Biot Number Estimation to , -- ., , -- . and , -- ℎ. -- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature -- Mathematical Background -- Maximum Value at the Core -- Threshold Biot Number -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Other Indirect Determinations -- Heat Transfer Coefficient -- Heat Generation Constants -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example V -- References -- Chapter 2 Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder -- Abstract -- Introduction -- Methods -- System Investigated -- Governing Equations -- Material Properties -- Modeling Method Studies -- Model Validation -- Results -- Modeling Method Variations -- Case A: Time Discretization Method -- Case B: Timestep -- Case C: Upwinding -- Case D: Gradient Calculations -- Case E: Gradient Limiter -- Case F: Compressibility Effects with Model -- Case G: Standard -- Turbulence Model Case H: Non-Equilibrium Wall Treatment Turbulence Model. -- Case I: Enhanced Wall Treatment -- Turbulence Model -- Moving Cylinder Modeling Method -- Velocity = 250 m/s -- Velocity = 500 m/s -- Velocity = 1000 m/s -- Conclusion -- References -- Chapter 3 -- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods -- Abstract -- Introduction -- Basic Formulation of FS-FEM -- Basic Equation of Heat Conduction -- Basic Formulation of FS-FEM -- Nonconforming Intra-Element Field -- Auxiliary Conforming Frame Field -- Modified Variational Principle Heat Conduction. http://id.loc.gov/authorities/subjects/sh85059759 Finite element method. http://id.loc.gov/authorities/subjects/sh85048349 Chaleur Conduction. Méthode des éléments finis. Finite element method fast Heat Conduction fast Kelley, William [Editor of Nova Science Publishers] editor. Print version: Understanding heat conduction New York : Nova Science Publishers, [2021] 9781536191820 (DLC) 2021002053 |
spellingShingle | Understanding heat conduction / Physics Research and Technology Ser. Intro -- Contents -- Preface -- Chapter 1 -- Cooling Kinetics in Stone Fruits -- Abstract -- General Introduction: Some Concepts in Heat Transfer -- Estimations and Applications -- Cooling/Heating Times -- Example I (from Reference [5]) -- Solution -- Modelling Thermal kinetics in stone fruits -- Mathematical Background -- Estimations and Applications -- Cooling/Heating Times -- Thermal Flow -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example II (from Reference [13]) -- Experiment Description -- Equivalent Sphere Determination of Biot Number and Thermal Diffusivity -- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2. -- Maximum Values of , -- . -- Example III. Prediction of Cooling Times in Example II -- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation -- Mathematical Background -- General Solution for Simple Geometries -- Average Value -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Summary of the Procedure -- Example IV (from Reference [48]) -- Maximum Value at the Core -- Threshold Biot Number Estimation to , -- ., , -- . and , -- ℎ. -- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature -- Mathematical Background -- Maximum Value at the Core -- Threshold Biot Number -- Estimations and Applications -- Cooling/Heating Times -- Displacement Correction -- Other Indirect Determinations -- Heat Transfer Coefficient -- Heat Generation Constants -- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient -- Example V -- References -- Chapter 2 Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder -- Abstract -- Introduction -- Methods -- System Investigated -- Governing Equations -- Material Properties -- Modeling Method Studies -- Model Validation -- Results -- Modeling Method Variations -- Case A: Time Discretization Method -- Case B: Timestep -- Case C: Upwinding -- Case D: Gradient Calculations -- Case E: Gradient Limiter -- Case F: Compressibility Effects with Model -- Case G: Standard -- Turbulence Model Case H: Non-Equilibrium Wall Treatment Turbulence Model. -- Case I: Enhanced Wall Treatment -- Turbulence Model -- Moving Cylinder Modeling Method -- Velocity = 250 m/s -- Velocity = 500 m/s -- Velocity = 1000 m/s -- Conclusion -- References -- Chapter 3 -- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods -- Abstract -- Introduction -- Basic Formulation of FS-FEM -- Basic Equation of Heat Conduction -- Basic Formulation of FS-FEM -- Nonconforming Intra-Element Field -- Auxiliary Conforming Frame Field -- Modified Variational Principle Heat Conduction. http://id.loc.gov/authorities/subjects/sh85059759 Finite element method. http://id.loc.gov/authorities/subjects/sh85048349 Chaleur Conduction. Méthode des éléments finis. Finite element method fast Heat Conduction fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85059759 http://id.loc.gov/authorities/subjects/sh85048349 |
title | Understanding heat conduction / |
title_auth | Understanding heat conduction / |
title_exact_search | Understanding heat conduction / |
title_full | Understanding heat conduction / William Kelley, editor. |
title_fullStr | Understanding heat conduction / William Kelley, editor. |
title_full_unstemmed | Understanding heat conduction / William Kelley, editor. |
title_short | Understanding heat conduction / |
title_sort | understanding heat conduction |
topic | Heat Conduction. http://id.loc.gov/authorities/subjects/sh85059759 Finite element method. http://id.loc.gov/authorities/subjects/sh85048349 Chaleur Conduction. Méthode des éléments finis. Finite element method fast Heat Conduction fast |
topic_facet | Heat Conduction. Finite element method. Chaleur Conduction. Méthode des éléments finis. Finite element method Heat Conduction |
work_keys_str_mv | AT kelleywilliam understandingheatconduction |