Essential Statistics for Non-STEM Data Analysts: Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python.
Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functionin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing, Limited,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python. |
Beschreibung: | Description based upon print version of record. Learning about joint and conditional distribution. |
Beschreibung: | 1 online resource (393 p.) |
ISBN: | 9781838987565 1838987568 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1223093446 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 201121s2020 xx o ||| 0 eng d | ||
040 | |a EBLCP |b eng |c EBLCP |d UKAHL |d EBLCP |d UKMGB |d OCLCO |d OCLCF |d OCLCO |d OCLCQ |d YDX |d N$T |d TEFOD |d OCLCO |d OCLCQ |d OCLCL | ||
015 | |a GBC0I1480 |2 bnb | ||
016 | 7 | |a 020014563 |2 Uk | |
019 | |a 1221557313 |a 1339722848 |a 1395630775 |a 1430327743 | ||
020 | |a 9781838987565 | ||
020 | |a 1838987568 | ||
020 | |z 9781838984847 (pbk.) | ||
035 | |a (OCoLC)1223093446 |z (OCoLC)1221557313 |z (OCoLC)1339722848 |z (OCoLC)1395630775 |z (OCoLC)1430327743 | ||
037 | |a 9781838987565 |b Packt Publishing | ||
050 | 4 | |a QA76.9.D343 |b L57 2020 | |
082 | 7 | |a 519.5 | |
049 | |a MAIN | ||
100 | 1 | |a Li, Rongpeng. | |
245 | 1 | 0 | |a Essential Statistics for Non-STEM Data Analysts |h [electronic resource] : |b Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
260 | |a Birmingham : |b Packt Publishing, Limited, |c 2020. | ||
300 | |a 1 online resource (393 p.) | ||
336 | |a text |2 rdacontent | ||
337 | |a computer |2 rdamedia | ||
338 | |a online resource |2 rdacarrier | ||
500 | |a Description based upon print version of record. | ||
505 | 0 | |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal | |
505 | 8 | |a Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types | |
505 | 8 | |a Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API | |
505 | 8 | |a Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean | |
505 | 8 | |a The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution | |
500 | |a Learning about joint and conditional distribution. | ||
520 | |a Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python. | ||
650 | 0 | |a Statistics. |0 http://id.loc.gov/authorities/subjects/sh85127580 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Statistique. | |
650 | 7 | |a statistics. |2 aat | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 7 | |a Statistics |2 fast | |
758 | |i has work: |a Essential Statistics for NonEM Data Analysts (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYp3BMVF8MvP4wgQJCQFQV |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Li, Rongpeng |t Essential Statistics for Non-STEM Data Analysts : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python |d Birmingham : Packt Publishing, Limited,c2020 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2680289 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37877015 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6396061 | ||
938 | |a EBSCOhost |b EBSC |n 2680289 | ||
938 | |a YBP Library Services |b YANK |n 301743570 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1223093446 |
---|---|
_version_ | 1816882533487345664 |
adam_text | |
any_adam_object | |
author | Li, Rongpeng |
author_facet | Li, Rongpeng |
author_role | |
author_sort | Li, Rongpeng |
author_variant | r l rl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 L57 2020 |
callnumber-search | QA76.9.D343 L57 2020 |
callnumber-sort | QA 276.9 D343 L57 42020 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution |
ctrlnum | (OCoLC)1223093446 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05836cam a2200601Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-on1223093446</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">201121s2020 xx o ||| 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="c">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC0I1480</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">020014563</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1221557313</subfield><subfield code="a">1339722848</subfield><subfield code="a">1395630775</subfield><subfield code="a">1430327743</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838987565</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838987568</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838984847 (pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1223093446</subfield><subfield code="z">(OCoLC)1221557313</subfield><subfield code="z">(OCoLC)1339722848</subfield><subfield code="z">(OCoLC)1395630775</subfield><subfield code="z">(OCoLC)1430327743</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838987565</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield><subfield code="b">L57 2020</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Rongpeng.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Essential Statistics for Non-STEM Data Analysts</subfield><subfield code="h">[electronic resource] :</subfield><subfield code="b">Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (393 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Learning about joint and conditional distribution.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127580</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">statistics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Essential Statistics for NonEM Data Analysts (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYp3BMVF8MvP4wgQJCQFQV</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Li, Rongpeng</subfield><subfield code="t">Essential Statistics for Non-STEM Data Analysts : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python</subfield><subfield code="d">Birmingham : Packt Publishing, Limited,c2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2680289</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37877015</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6396061</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2680289</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301743570</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1223093446 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:08Z |
institution | BVB |
isbn | 9781838987565 1838987568 |
language | English |
oclc_num | 1223093446 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (393 p.) |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Li, Rongpeng. Essential Statistics for Non-STEM Data Analysts [electronic resource] : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. Birmingham : Packt Publishing, Limited, 2020. 1 online resource (393 p.) text rdacontent computer rdamedia online resource rdacarrier Description based upon print version of record. Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution Learning about joint and conditional distribution. Put your data science knowledge to work with this practical guide to statistics. You'll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python. Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) Statistique. statistics. aat Python (Computer program language) fast Statistics fast has work: Essential Statistics for NonEM Data Analysts (Text) https://id.oclc.org/worldcat/entity/E39PCYp3BMVF8MvP4wgQJCQFQV https://id.oclc.org/worldcat/ontology/hasWork Print version: Li, Rongpeng Essential Statistics for Non-STEM Data Analysts : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python Birmingham : Packt Publishing, Limited,c2020 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2680289 Volltext |
spellingShingle | Li, Rongpeng Essential Statistics for Non-STEM Data Analysts Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Statistics for Data Science -- Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing -- Technical requirements -- Collecting data from various data sources -- Reading data directly from files -- Obtaining data from an API -- Obtaining data from scratch -- Data imputation -- Preparing the dataset for imputation -- Imputation with mean or median values -- Imputation with the mode/most frequent value -- Outlier removal Data standardization -- when and how -- Examples involving the scikit-learn preprocessing module -- Imputation -- Standardization -- Summary -- Chapter 2: Essential Statistics for Data Assessment -- Classifying numerical and categorical variables -- Distinguishing between numerical and categorical variables -- Understanding mean, median, and mode -- Mean -- Median -- Mode -- Learning about variance, standard deviation, quartiles,percentiles, and skewness -- Variance -- Standard deviation -- Quartiles -- Skewness -- Knowing how to handle categorical variables and mixed data types Frequencies and proportions -- Transforming a continuous variable to a categorical one -- Using bivariate and multivariate descriptive statistics -- Covariance -- Cross-tabulation -- Summary -- Chapter 3: Visualization with Statistical Graphs -- Basic examples with the Python Matplotlib package -- Elements of a statistical graph -- Exploring important types of plotting in Matplotlib -- Advanced visualization customization -- Customizing the geometry -- Customizing the aesthetics -- Query-oriented statistical plotting -- Example 1 -- preparing data to fit the plotting function API Example 2 -- combining analysis with plain plotting -- Presentation-ready plotting tips -- Use styling -- Font matters a lot -- Summary -- Section 2: Essentials of Statistical Analysis -- Chapter 4: Sampling and Inferential Statistics -- Understanding fundamental concepts in sampling techniques -- Performing proper sampling under different scenarios -- The dangers associated with non-probability sampling -- Probability sampling -- the safer approach -- Understanding statistics associated with sampling -- Sampling distribution of the sample mean -- Standard error of the sample mean The central limit theorem -- Summary -- Chapter 5: Common Probability Distributions -- Understanding important concepts in probability -- Events and sample space -- The probability mass function and the probability density function -- Subjective probability and empirical probability -- Understanding common discrete probability distributions -- Bernoulli distribution -- Binomial distribution -- Poisson distribution -- Understanding the common continuous probability distribution -- Uniform distribution -- Exponential distribution -- Normal distribution Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) Statistique. statistics. aat Python (Computer program language) fast Statistics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85127580 http://id.loc.gov/authorities/subjects/sh96008834 |
title | Essential Statistics for Non-STEM Data Analysts Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_auth | Essential Statistics for Non-STEM Data Analysts Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_exact_search | Essential Statistics for Non-STEM Data Analysts Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_full | Essential Statistics for Non-STEM Data Analysts [electronic resource] : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_fullStr | Essential Statistics for Non-STEM Data Analysts [electronic resource] : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_full_unstemmed | Essential Statistics for Non-STEM Data Analysts [electronic resource] : Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
title_short | Essential Statistics for Non-STEM Data Analysts |
title_sort | essential statistics for non stem data analysts get to grips with the statistics and math knowledge needed to enter the world of data science with python |
title_sub | Get to Grips with the Statistics and Math Knowledge Needed to Enter the World of Data Science with Python. |
topic | Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) Statistique. statistics. aat Python (Computer program language) fast Statistics fast |
topic_facet | Statistics. Python (Computer program language) Python (Langage de programmation) Statistique. statistics. Statistics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2680289 |
work_keys_str_mv | AT lirongpeng essentialstatisticsfornonstemdataanalystsgettogripswiththestatisticsandmathknowledgeneededtoentertheworldofdatasciencewithpython |