Artificial intelligence with python cookbook :: proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6
If you are looking to build next-generation AI solutions for work or even for your pet projects, you'll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build s...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
PACKT Publishing,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If you are looking to build next-generation AI solutions for work or even for your pet projects, you'll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving. |
Beschreibung: | 1 online resource |
ISBN: | 9781789137965 1789137969 |
Internformat
MARC
LEADER | 00000cam a22000007i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1203928234 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 201105s2020 enk o 000 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d N$T |d OCLCO |d EBLCP |d UKAHL |d OCLCF |d NLW |d OCLCO |d YDX |d OCLCQ |d UKMGB |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
015 | |a GBC338223 |2 bnb | ||
016 | 7 | |a 020021796 |2 Uk | |
019 | |a 1204134303 | ||
020 | |a 9781789137965 |q electronic book | ||
020 | |a 1789137969 |q electronic book | ||
035 | |a (OCoLC)1203928234 |z (OCoLC)1204134303 | ||
037 | |a 9781789137965 |b Packt Publishing | ||
050 | 4 | |a Q325.5 |b .A94 2020 | |
082 | 7 | |a 005.133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Auffarth, Ben. | |
245 | 1 | 0 | |a Artificial intelligence with python cookbook : |b proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
264 | 1 | |a Birmingham : |b PACKT Publishing, |c 2020. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a If you are looking to build next-generation AI solutions for work or even for your pet projects, you'll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving. | ||
505 | 0 | |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Artificial Intelligence in Python -- Technical requirements -- Setting up a Jupyter environment -- Getting ready -- How to do it... -- Installing libraries with Google Colab -- Self-hosting a Jupyter Notebook environment -- How it works... -- There's more... -- See also -- Getting proficient in Python for AI -- Getting ready -- How to do it... -- Obtaining the history of Jupyter commands and outputs -- Execution history -- Outputs | |
505 | 8 | |a Auto-reloading packages -- Debugging -- Timing code execution -- Displaying progress bars -- Compiling your code -- Speeding up pandas DataFrames -- Parallelizing your code -- See also -- Classifying in scikit-learn, Keras, and PyTorch -- Getting ready -- How to do it... -- Visualizing data in seaborn -- Modeling in scikit-learn -- Modeling in Keras -- Modeling in PyTorch -- How it works... -- Neural network training -- The SELU activation function -- Softmax activation -- Cross-entropy -- See also -- Modeling with Keras -- Getting ready -- How to do it... -- Data loading and preprocessing | |
505 | 8 | |a Model training -- How it works... -- Maximal information coefficient -- Data generators -- Permutation importance -- See also -- Chapter 2: Advanced Topics in Supervised Machine Learning -- Technical requirements -- Transforming data in scikit-learn -- Getting ready -- How to do it... -- Encoding ranges numerically -- Deriving higher-order features -- Combining transformations -- How it works... -- There's more... -- See also -- Predicting house prices in PyTorch -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Live decisioning customer values | |
505 | 8 | |a Getting ready -- How to do it... -- How it works... -- Active learning -- Hoeffding Tree -- Class weighting -- See also -- Battling algorithmic bias -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Forecasting CO2 time series -- Getting ready -- How to do it... -- Analyzing time series using ARIMA and SARIMA -- How it works... -- There's more... -- See also -- Chapter 3: Patterns, Outliers, and Recommendations -- Clustering market segments -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Discovering anomalies | |
505 | 8 | |a Getting ready -- How to do it... -- How it works... -- k-nearest neighbors -- Isolation forest -- Autoencoder -- See also -- Representing for similarity search -- Getting ready -- How to do it... -- Baseline -- string comparison functions -- Bag-of-characters approach -- Siamese neural network approach -- How it works... -- Recommending products -- Getting ready -- How to do it... -- How it works... -- Precision at k -- Matrix factorization -- The lightfm model -- See also -- Spotting fraudster communities -- Getting ready -- How to do it... -- Creating an adjacency matrix | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Data capture & analysis. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Computers |x Data Processing. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a Artificial Intelligence with Python Cookbook (Text) |1 https://id.oclc.org/worldcat/entity/E39PD36t9C69dG8jrwVKGcTKtX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Auffarth, Ben |t Artificial Intelligence with Python Cookbook : Proven Recipes for Applying AI Algorithms and Deep Learning Techniques Using TensorFlow 2. x and Pytorch 1. 6 |d Birmingham : Packt Publishing, Limited,c2020 |z 9781789133967 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2663695 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 2663695 | ||
938 | |a YBP Library Services |b YANK |n 301722495 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37842040 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6383597 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1203928234 |
---|---|
_version_ | 1816882532367466496 |
adam_text | |
any_adam_object | |
author | Auffarth, Ben |
author_facet | Auffarth, Ben |
author_role | |
author_sort | Auffarth, Ben |
author_variant | b a ba |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .A94 2020 |
callnumber-search | Q325.5 .A94 2020 |
callnumber-sort | Q 3325.5 A94 42020 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Artificial Intelligence in Python -- Technical requirements -- Setting up a Jupyter environment -- Getting ready -- How to do it... -- Installing libraries with Google Colab -- Self-hosting a Jupyter Notebook environment -- How it works... -- There's more... -- See also -- Getting proficient in Python for AI -- Getting ready -- How to do it... -- Obtaining the history of Jupyter commands and outputs -- Execution history -- Outputs Auto-reloading packages -- Debugging -- Timing code execution -- Displaying progress bars -- Compiling your code -- Speeding up pandas DataFrames -- Parallelizing your code -- See also -- Classifying in scikit-learn, Keras, and PyTorch -- Getting ready -- How to do it... -- Visualizing data in seaborn -- Modeling in scikit-learn -- Modeling in Keras -- Modeling in PyTorch -- How it works... -- Neural network training -- The SELU activation function -- Softmax activation -- Cross-entropy -- See also -- Modeling with Keras -- Getting ready -- How to do it... -- Data loading and preprocessing Model training -- How it works... -- Maximal information coefficient -- Data generators -- Permutation importance -- See also -- Chapter 2: Advanced Topics in Supervised Machine Learning -- Technical requirements -- Transforming data in scikit-learn -- Getting ready -- How to do it... -- Encoding ranges numerically -- Deriving higher-order features -- Combining transformations -- How it works... -- There's more... -- See also -- Predicting house prices in PyTorch -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Live decisioning customer values Getting ready -- How to do it... -- How it works... -- Active learning -- Hoeffding Tree -- Class weighting -- See also -- Battling algorithmic bias -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Forecasting CO2 time series -- Getting ready -- How to do it... -- Analyzing time series using ARIMA and SARIMA -- How it works... -- There's more... -- See also -- Chapter 3: Patterns, Outliers, and Recommendations -- Clustering market segments -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Discovering anomalies Getting ready -- How to do it... -- How it works... -- k-nearest neighbors -- Isolation forest -- Autoencoder -- See also -- Representing for similarity search -- Getting ready -- How to do it... -- Baseline -- string comparison functions -- Bag-of-characters approach -- Siamese neural network approach -- How it works... -- Recommending products -- Getting ready -- How to do it... -- How it works... -- Precision at k -- Matrix factorization -- The lightfm model -- See also -- Spotting fraudster communities -- Getting ready -- How to do it... -- Creating an adjacency matrix |
ctrlnum | (OCoLC)1203928234 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06362cam a22006977i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1203928234</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">201105s2020 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC338223</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">020021796</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1204134303</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789137965</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789137969</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1203928234</subfield><subfield code="z">(OCoLC)1204134303</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781789137965</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.A94 2020</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Auffarth, Ben.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence with python cookbook :</subfield><subfield code="b">proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham :</subfield><subfield code="b">PACKT Publishing,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you are looking to build next-generation AI solutions for work or even for your pet projects, you'll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Artificial Intelligence in Python -- Technical requirements -- Setting up a Jupyter environment -- Getting ready -- How to do it... -- Installing libraries with Google Colab -- Self-hosting a Jupyter Notebook environment -- How it works... -- There's more... -- See also -- Getting proficient in Python for AI -- Getting ready -- How to do it... -- Obtaining the history of Jupyter commands and outputs -- Execution history -- Outputs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Auto-reloading packages -- Debugging -- Timing code execution -- Displaying progress bars -- Compiling your code -- Speeding up pandas DataFrames -- Parallelizing your code -- See also -- Classifying in scikit-learn, Keras, and PyTorch -- Getting ready -- How to do it... -- Visualizing data in seaborn -- Modeling in scikit-learn -- Modeling in Keras -- Modeling in PyTorch -- How it works... -- Neural network training -- The SELU activation function -- Softmax activation -- Cross-entropy -- See also -- Modeling with Keras -- Getting ready -- How to do it... -- Data loading and preprocessing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Model training -- How it works... -- Maximal information coefficient -- Data generators -- Permutation importance -- See also -- Chapter 2: Advanced Topics in Supervised Machine Learning -- Technical requirements -- Transforming data in scikit-learn -- Getting ready -- How to do it... -- Encoding ranges numerically -- Deriving higher-order features -- Combining transformations -- How it works... -- There's more... -- See also -- Predicting house prices in PyTorch -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Live decisioning customer values</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Getting ready -- How to do it... -- How it works... -- Active learning -- Hoeffding Tree -- Class weighting -- See also -- Battling algorithmic bias -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Forecasting CO2 time series -- Getting ready -- How to do it... -- Analyzing time series using ARIMA and SARIMA -- How it works... -- There's more... -- See also -- Chapter 3: Patterns, Outliers, and Recommendations -- Clustering market segments -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Discovering anomalies</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Getting ready -- How to do it... -- How it works... -- k-nearest neighbors -- Isolation forest -- Autoencoder -- See also -- Representing for similarity search -- Getting ready -- How to do it... -- Baseline -- string comparison functions -- Bag-of-characters approach -- Siamese neural network approach -- How it works... -- Recommending products -- Getting ready -- How to do it... -- How it works... -- Precision at k -- Matrix factorization -- The lightfm model -- See also -- Spotting fraudster communities -- Getting ready -- How to do it... -- Creating an adjacency matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data capture & analysis.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Artificial Intelligence with Python Cookbook (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD36t9C69dG8jrwVKGcTKtX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Auffarth, Ben</subfield><subfield code="t">Artificial Intelligence with Python Cookbook : Proven Recipes for Applying AI Algorithms and Deep Learning Techniques Using TensorFlow 2. x and Pytorch 1. 6</subfield><subfield code="d">Birmingham : Packt Publishing, Limited,c2020</subfield><subfield code="z">9781789133967</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2663695</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2663695</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301722495</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37842040</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6383597</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1203928234 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:06Z |
institution | BVB |
isbn | 9781789137965 1789137969 |
language | English |
oclc_num | 1203928234 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | PACKT Publishing, |
record_format | marc |
spelling | Auffarth, Ben. Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 Birmingham : PACKT Publishing, 2020. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier If you are looking to build next-generation AI solutions for work or even for your pet projects, you'll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving. Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Artificial Intelligence in Python -- Technical requirements -- Setting up a Jupyter environment -- Getting ready -- How to do it... -- Installing libraries with Google Colab -- Self-hosting a Jupyter Notebook environment -- How it works... -- There's more... -- See also -- Getting proficient in Python for AI -- Getting ready -- How to do it... -- Obtaining the history of Jupyter commands and outputs -- Execution history -- Outputs Auto-reloading packages -- Debugging -- Timing code execution -- Displaying progress bars -- Compiling your code -- Speeding up pandas DataFrames -- Parallelizing your code -- See also -- Classifying in scikit-learn, Keras, and PyTorch -- Getting ready -- How to do it... -- Visualizing data in seaborn -- Modeling in scikit-learn -- Modeling in Keras -- Modeling in PyTorch -- How it works... -- Neural network training -- The SELU activation function -- Softmax activation -- Cross-entropy -- See also -- Modeling with Keras -- Getting ready -- How to do it... -- Data loading and preprocessing Model training -- How it works... -- Maximal information coefficient -- Data generators -- Permutation importance -- See also -- Chapter 2: Advanced Topics in Supervised Machine Learning -- Technical requirements -- Transforming data in scikit-learn -- Getting ready -- How to do it... -- Encoding ranges numerically -- Deriving higher-order features -- Combining transformations -- How it works... -- There's more... -- See also -- Predicting house prices in PyTorch -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Live decisioning customer values Getting ready -- How to do it... -- How it works... -- Active learning -- Hoeffding Tree -- Class weighting -- See also -- Battling algorithmic bias -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Forecasting CO2 time series -- Getting ready -- How to do it... -- Analyzing time series using ARIMA and SARIMA -- How it works... -- There's more... -- See also -- Chapter 3: Patterns, Outliers, and Recommendations -- Clustering market segments -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Discovering anomalies Getting ready -- How to do it... -- How it works... -- k-nearest neighbors -- Isolation forest -- Autoencoder -- See also -- Representing for similarity search -- Getting ready -- How to do it... -- Baseline -- string comparison functions -- Bag-of-characters approach -- Siamese neural network approach -- How it works... -- Recommending products -- Getting ready -- How to do it... -- How it works... -- Precision at k -- Matrix factorization -- The lightfm model -- See also -- Spotting fraudster communities -- Getting ready -- How to do it... -- Creating an adjacency matrix Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Python (Langage de programmation) artificial intelligence. aat Data capture & analysis. bicssc Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast has work: Artificial Intelligence with Python Cookbook (Text) https://id.oclc.org/worldcat/entity/E39PD36t9C69dG8jrwVKGcTKtX https://id.oclc.org/worldcat/ontology/hasWork Print version: Auffarth, Ben Artificial Intelligence with Python Cookbook : Proven Recipes for Applying AI Algorithms and Deep Learning Techniques Using TensorFlow 2. x and Pytorch 1. 6 Birmingham : Packt Publishing, Limited,c2020 9781789133967 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2663695 Volltext |
spellingShingle | Auffarth, Ben Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Artificial Intelligence in Python -- Technical requirements -- Setting up a Jupyter environment -- Getting ready -- How to do it... -- Installing libraries with Google Colab -- Self-hosting a Jupyter Notebook environment -- How it works... -- There's more... -- See also -- Getting proficient in Python for AI -- Getting ready -- How to do it... -- Obtaining the history of Jupyter commands and outputs -- Execution history -- Outputs Auto-reloading packages -- Debugging -- Timing code execution -- Displaying progress bars -- Compiling your code -- Speeding up pandas DataFrames -- Parallelizing your code -- See also -- Classifying in scikit-learn, Keras, and PyTorch -- Getting ready -- How to do it... -- Visualizing data in seaborn -- Modeling in scikit-learn -- Modeling in Keras -- Modeling in PyTorch -- How it works... -- Neural network training -- The SELU activation function -- Softmax activation -- Cross-entropy -- See also -- Modeling with Keras -- Getting ready -- How to do it... -- Data loading and preprocessing Model training -- How it works... -- Maximal information coefficient -- Data generators -- Permutation importance -- See also -- Chapter 2: Advanced Topics in Supervised Machine Learning -- Technical requirements -- Transforming data in scikit-learn -- Getting ready -- How to do it... -- Encoding ranges numerically -- Deriving higher-order features -- Combining transformations -- How it works... -- There's more... -- See also -- Predicting house prices in PyTorch -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Live decisioning customer values Getting ready -- How to do it... -- How it works... -- Active learning -- Hoeffding Tree -- Class weighting -- See also -- Battling algorithmic bias -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Forecasting CO2 time series -- Getting ready -- How to do it... -- Analyzing time series using ARIMA and SARIMA -- How it works... -- There's more... -- See also -- Chapter 3: Patterns, Outliers, and Recommendations -- Clustering market segments -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Discovering anomalies Getting ready -- How to do it... -- How it works... -- k-nearest neighbors -- Isolation forest -- Autoencoder -- See also -- Representing for similarity search -- Getting ready -- How to do it... -- Baseline -- string comparison functions -- Bag-of-characters approach -- Siamese neural network approach -- How it works... -- Recommending products -- Getting ready -- How to do it... -- How it works... -- Precision at k -- Matrix factorization -- The lightfm model -- See also -- Spotting fraudster communities -- Getting ready -- How to do it... -- Creating an adjacency matrix Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Python (Langage de programmation) artificial intelligence. aat Data capture & analysis. bicssc Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh96008834 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_auth | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_exact_search | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_full | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_fullStr | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_full_unstemmed | Artificial intelligence with python cookbook : proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
title_short | Artificial intelligence with python cookbook : |
title_sort | artificial intelligence with python cookbook proven recipes for applying ai algorithms and deep learning techniques using tensorflow 2 x and pytorch 1 6 |
title_sub | proven recipes for applying ai algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. Python (Langage de programmation) artificial intelligence. aat Data capture & analysis. bicssc Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast |
topic_facet | Machine learning. Artificial intelligence. Python (Computer program language) Artificial Intelligence Machine Learning Apprentissage automatique. Intelligence artificielle. Python (Langage de programmation) artificial intelligence. Data capture & analysis. Neural networks & fuzzy systems. Computers Intelligence (AI) & Semantics. Computers Data Processing. Computers Neural Networks. Artificial intelligence Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2663695 |
work_keys_str_mv | AT auffarthben artificialintelligencewithpythoncookbookprovenrecipesforapplyingaialgorithmsanddeeplearningtechniquesusingtensorflow2xandpytorch16 |