Data Engineering with Python :: Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python.
This book is a comprehensive introduction to building data pipelines, that will have you moving and transforming data in no time. You'll learn how to build data pipelines, transform and clean data, and deliver it to provide value to users. You will learn to deploy production data pipelines that...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing, Limited,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a comprehensive introduction to building data pipelines, that will have you moving and transforming data in no time. You'll learn how to build data pipelines, transform and clean data, and deliver it to provide value to users. You will learn to deploy production data pipelines that include logging, monitoring, and version control. |
Beschreibung: | 1 online resource (357 pages) |
ISBN: | 1839212306 9781839212307 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1202466316 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 201031s2020 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d UKAHL |d YDX |d N$T |d OCLCO |d EBLCP |d OCLCF |d UKMGB |d TEFOD |d MFS |d DST |d OCLCO |d OCLCQ |d ZCU |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBC0C6754 |2 bnb | ||
016 | 7 | |a 019899912 |2 Uk | |
019 | |a 1202226085 |a 1202474890 | ||
020 | |a 1839212306 | ||
020 | |a 9781839212307 |q (electronic bk.) | ||
020 | |z 9781839214189 |q (pbk.) | ||
035 | |a (OCoLC)1202466316 |z (OCoLC)1202226085 |z (OCoLC)1202474890 | ||
037 | |a 9781839212307 |b Packt Publishing | ||
037 | |a 8ED877EE-D46C-4D62-A51A-55817E09DE5A |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.9.D3 | |
082 | 7 | |a 005.7565 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Crickard, Paul. | |
245 | 1 | 0 | |a Data Engineering with Python : |b Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
260 | |a Birmingham : |b Packt Publishing, Limited, |c 2020. | ||
300 | |a 1 online resource (357 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
520 | |a This book is a comprehensive introduction to building data pipelines, that will have you moving and transforming data in no time. You'll learn how to build data pipelines, transform and clean data, and deliver it to provide value to users. You will learn to deploy production data pipelines that include logging, monitoring, and version control. | ||
505 | 0 | |a What is data engineering? -- Building our data engineering infrastructure --Reading and writing files -- Working with databases -- Cleaning, transforming, and enriching data --Building a 311 data pipeline -- Features of a production pipeline -- Version control with the NiFi registry --Monitoring data pipelines -- Deploying data pipelines -- Building a production data pipeline -- Buildings Kafka cluster -- Streaming data with Apache Kafka -- Data processing with Apache Spark -- Real-time edge data with MiNiFi, Kafka, and Spark. | |
650 | 0 | |a Database management. |0 http://id.loc.gov/authorities/subjects/sh85035848 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 6 | |a Bases de données |x Gestion. | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 7 | |a Database management |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a Data engineering with Python (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGRpqJFJrjMVBWrbrgMc6C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Crickard, Paul. |t Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |d Birmingham : Packt Publishing, Limited, ©2020 |z 9781839214189 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2659433 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37577197 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6379034 | ||
938 | |a EBSCOhost |b EBSC |n 2659433 | ||
938 | |a YBP Library Services |b YANK |n 301685673 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1202466316 |
---|---|
_version_ | 1816882531603054592 |
adam_text | |
any_adam_object | |
author | Crickard, Paul |
author_facet | Crickard, Paul |
author_role | |
author_sort | Crickard, Paul |
author_variant | p c pc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D3 |
callnumber-search | QA76.9.D3 |
callnumber-sort | QA 276.9 D3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | What is data engineering? -- Building our data engineering infrastructure --Reading and writing files -- Working with databases -- Cleaning, transforming, and enriching data --Building a 311 data pipeline -- Features of a production pipeline -- Version control with the NiFi registry --Monitoring data pipelines -- Deploying data pipelines -- Building a production data pipeline -- Buildings Kafka cluster -- Streaming data with Apache Kafka -- Data processing with Apache Spark -- Real-time edge data with MiNiFi, Kafka, and Spark. |
ctrlnum | (OCoLC)1202466316 |
dewey-full | 005.7565 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7565 |
dewey-search | 005.7565 |
dewey-sort | 15.7565 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03345cam a2200541 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1202466316</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">201031s2020 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">TEFOD</subfield><subfield code="d">MFS</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC0C6754</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019899912</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1202226085</subfield><subfield code="a">1202474890</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1839212306</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839212307</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781839214189</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202466316</subfield><subfield code="z">(OCoLC)1202226085</subfield><subfield code="z">(OCoLC)1202474890</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781839212307</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">8ED877EE-D46C-4D62-A51A-55817E09DE5A</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D3</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7565</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crickard, Paul.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Engineering with Python :</subfield><subfield code="b">Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (357 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a comprehensive introduction to building data pipelines, that will have you moving and transforming data in no time. You'll learn how to build data pipelines, transform and clean data, and deliver it to provide value to users. You will learn to deploy production data pipelines that include logging, monitoring, and version control.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">What is data engineering? -- Building our data engineering infrastructure --Reading and writing files -- Working with databases -- Cleaning, transforming, and enriching data --Building a 311 data pipeline -- Features of a production pipeline -- Version control with the NiFi registry --Monitoring data pipelines -- Deploying data pipelines -- Building a production data pipeline -- Buildings Kafka cluster -- Streaming data with Apache Kafka -- Data processing with Apache Spark -- Real-time edge data with MiNiFi, Kafka, and Spark.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85035848</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bases de données</subfield><subfield code="x">Gestion.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Database management</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Data engineering with Python (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGRpqJFJrjMVBWrbrgMc6C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Crickard, Paul.</subfield><subfield code="t">Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2020</subfield><subfield code="z">9781839214189</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2659433</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37577197</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6379034</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2659433</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301685673</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1202466316 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:06Z |
institution | BVB |
isbn | 1839212306 9781839212307 |
language | English |
oclc_num | 1202466316 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (357 pages) |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Crickard, Paul. Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. Birmingham : Packt Publishing, Limited, 2020. 1 online resource (357 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. This book is a comprehensive introduction to building data pipelines, that will have you moving and transforming data in no time. You'll learn how to build data pipelines, transform and clean data, and deliver it to provide value to users. You will learn to deploy production data pipelines that include logging, monitoring, and version control. What is data engineering? -- Building our data engineering infrastructure --Reading and writing files -- Working with databases -- Cleaning, transforming, and enriching data --Building a 311 data pipeline -- Features of a production pipeline -- Version control with the NiFi registry --Monitoring data pipelines -- Deploying data pipelines -- Building a production data pipeline -- Buildings Kafka cluster -- Streaming data with Apache Kafka -- Data processing with Apache Spark -- Real-time edge data with MiNiFi, Kafka, and Spark. Database management. http://id.loc.gov/authorities/subjects/sh85035848 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Bases de données Gestion. Python (Langage de programmation) Database management fast Python (Computer program language) fast has work: Data engineering with Python (Text) https://id.oclc.org/worldcat/entity/E39PCGRpqJFJrjMVBWrbrgMc6C https://id.oclc.org/worldcat/ontology/hasWork Print version: Crickard, Paul. Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. Birmingham : Packt Publishing, Limited, ©2020 9781839214189 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2659433 Volltext |
spellingShingle | Crickard, Paul Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. What is data engineering? -- Building our data engineering infrastructure --Reading and writing files -- Working with databases -- Cleaning, transforming, and enriching data --Building a 311 data pipeline -- Features of a production pipeline -- Version control with the NiFi registry --Monitoring data pipelines -- Deploying data pipelines -- Building a production data pipeline -- Buildings Kafka cluster -- Streaming data with Apache Kafka -- Data processing with Apache Spark -- Real-time edge data with MiNiFi, Kafka, and Spark. Database management. http://id.loc.gov/authorities/subjects/sh85035848 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Bases de données Gestion. Python (Langage de programmation) Database management fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85035848 http://id.loc.gov/authorities/subjects/sh96008834 |
title | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_auth | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_exact_search | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_full | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_fullStr | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_full_unstemmed | Data Engineering with Python : Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
title_short | Data Engineering with Python : |
title_sort | data engineering with python work with massive datasets to design data models and automate data pipelines using python |
title_sub | Work with Massive Datasets to Design Data Models and Automate Data Pipelines Using Python. |
topic | Database management. http://id.loc.gov/authorities/subjects/sh85035848 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Bases de données Gestion. Python (Langage de programmation) Database management fast Python (Computer program language) fast |
topic_facet | Database management. Python (Computer program language) Bases de données Gestion. Python (Langage de programmation) Database management |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2659433 |
work_keys_str_mv | AT crickardpaul dataengineeringwithpythonworkwithmassivedatasetstodesigndatamodelsandautomatedatapipelinesusingpython |