Hands-on machine learning with scikit-learn and scientific Python toolkits :: a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /
This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing, Limited,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781838823580 1838823581 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1201697326 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 201027t20202020enka o 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d UMI |d YDXIT |d OCLCF |d OCLCO |d YDX |d EBLCP |d UKAHL |d UKMGB |d N$T |d OCLCQ |d OCLCO |d NLSHB |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBC094833 |2 bnb | ||
016 | 7 | |a 019859997 |2 Uk | |
019 | |a 1180969905 |a 1181834366 |a 1197737347 | ||
020 | |a 9781838823580 |q (electronic book) | ||
020 | |a 1838823581 |q (electronic book) | ||
020 | |z 9781838826048 | ||
035 | |a (OCoLC)1201697326 |z (OCoLC)1180969905 |z (OCoLC)1181834366 |z (OCoLC)1197737347 | ||
037 | |a CL0501000160 |b Safari Books Online | ||
050 | 4 | |a Q325.5 |b .A57 2020 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Amr, Tarek, |e author. |0 http://id.loc.gov/authorities/names/no2020105423 | |
245 | 1 | 0 | |a Hands-on machine learning with scikit-learn and scientific Python toolkits : |b a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / |c Tarek Amr. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, Limited, |c 2020. | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from digital title page (viewed on November 23, 2020). | |
505 | 0 | |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate | |
505 | 8 | |a Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data | |
505 | 8 | |a Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors | |
505 | 8 | |a Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features | |
505 | 8 | |a Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary | |
520 | |a This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 1 | 7 | |a Python (programmeertaal). |2 nbdbt |
758 | |i has work: |a Hands-on machine learning with scikit-learn and scientific Python toolkits (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGDfRm7PqrtMfKhfTmr44q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Amr, Tarek. |t Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python. |d Birmingham : Packt Publishing, Limited, ©2020 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2562942 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37504100 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6270729 | ||
938 | |a EBSCOhost |b EBSC |n 2562942 | ||
938 | |a YBP Library Services |b YANK |n 16873209 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1201697326 |
---|---|
_version_ | 1816882531301064704 |
adam_text | |
any_adam_object | |
author | Amr, Tarek |
author_GND | http://id.loc.gov/authorities/names/no2020105423 |
author_facet | Amr, Tarek |
author_role | aut |
author_sort | Amr, Tarek |
author_variant | t a ta |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .A57 2020 |
callnumber-search | Q325.5 .A57 2020 |
callnumber-sort | Q 3325.5 A57 42020 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary |
ctrlnum | (OCoLC)1201697326 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06179cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1201697326</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">201027t20202020enka o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">UMI</subfield><subfield code="d">YDXIT</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKMGB</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLSHB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC094833</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019859997</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1180969905</subfield><subfield code="a">1181834366</subfield><subfield code="a">1197737347</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838823580</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838823581</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838826048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1201697326</subfield><subfield code="z">(OCoLC)1180969905</subfield><subfield code="z">(OCoLC)1181834366</subfield><subfield code="z">(OCoLC)1197737347</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0501000160</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.A57 2020</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amr, Tarek,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2020105423</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on machine learning with scikit-learn and scientific Python toolkits :</subfield><subfield code="b">a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /</subfield><subfield code="c">Tarek Amr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on November 23, 2020).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Python (programmeertaal).</subfield><subfield code="2">nbdbt</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hands-on machine learning with scikit-learn and scientific Python toolkits (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGDfRm7PqrtMfKhfTmr44q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Amr, Tarek.</subfield><subfield code="t">Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2562942</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37504100</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6270729</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2562942</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16873209</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1201697326 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:30:05Z |
institution | BVB |
isbn | 9781838823580 1838823581 |
language | English |
oclc_num | 1201697326 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Amr, Tarek, author. http://id.loc.gov/authorities/names/no2020105423 Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / Tarek Amr. Birmingham, UK : Packt Publishing, Limited, 2020. ©2020 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from digital title page (viewed on November 23, 2020). Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics, and the available hyper-parameters. You will learn how to deploy the models in production. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Apprentissage automatique. Python (Langage de programmation) Machine learning fast Python (Computer program language) fast Python (programmeertaal). nbdbt has work: Hands-on machine learning with scikit-learn and scientific Python toolkits (Text) https://id.oclc.org/worldcat/entity/E39PCGDfRm7PqrtMfKhfTmr44q https://id.oclc.org/worldcat/ontology/hasWork Print version: Amr, Tarek. Hands-On Machine Learning with Scikit-learn and Scientific Python Toolkits : A Practical Guide to Implementing Supervised and Unsupervised Machine Learning Algorithms in Python. Birmingham : Packt Publishing, Limited, ©2020 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2562942 Volltext |
spellingShingle | Amr, Tarek Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Supervised Learning -- Chapter 1: Introduction to Machine Learning -- Understanding machine learning -- Types of machine learning algorithms -- Supervised learning -- Classification versus regression -- Supervised learning evaluation -- Unsupervised learning -- Reinforcement learning -- The model development life cycle -- Understanding a problem -- Splitting our data -- Finding the best manner to split the data -- Making sure the training and the test datasets are separate Development set -- Evaluating our model -- Deploying in production and monitoring -- Iterating -- When to use machine learning -- Introduction to scikit-learn -- It plays well with the Python data ecosystem -- Practical level of abstraction -- When not to use scikit-learn -- Installing the packages you need -- Introduction to pandas -- Python's scientific computing ecosystem conventions -- Summary -- Further reading -- Chapter 2: Making Decisions with Trees -- Understanding decision trees -- What are decision trees? -- Iris classification -- Loading the Iris dataset -- Splitting the data Training the model and using it for prediction -- Evaluating our predictions -- Which features were more important? -- Displaying the internal tree decisions -- How do decision trees learn? -- Splitting criteria -- Preventing overfitting -- Predictions -- Getting a more reliable score -- What to do now to get a more reliable score -- ShuffleSplit -- Tuning the hyperparameters for higher accuracy -- Splitting the data -- Trying different hyperparameter values -- Comparing the accuracy scores -- Visualizing the tree's decision boundaries -- Feature engineering -- Building decision tree regressors Predicting people's heights -- Regressor's evaluation -- Setting sample weights -- Summary -- Chapter 3: Making Decisions with Linear Equations -- Understanding linear models -- Linear equations -- Linear regression -- Estimating the amount paid to the taxi driver -- Predicting house prices in Boston -- Data exploration -- Splitting the data -- Calculating a baseline -- Training the linear regressor -- Evaluating our model's accuracy -- Showing feature coefficients -- Scaling for more meaningful coefficients -- Adding polynomial features -- Fitting the linear regressor with the derived features Regularizing the regressor -- Training the lasso regressor -- Finding the optimum regularization parameter -- Finding regression intervals -- Getting to know additional linear regressors -- Using logistic regression for classification -- Understanding the logistic function -- Plugging the logistic function into a linear model -- Objective function -- Regularization -- Solvers -- Configuring the logistic regression classifier -- Classifying the Iris dataset using logistic regression -- Understanding the classifier's decision boundaries -- Getting to know additional linear classifiers -- Summary Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Apprentissage automatique. Python (Langage de programmation) Machine learning fast Python (Computer program language) fast Python (programmeertaal). nbdbt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh96008834 |
title | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / |
title_auth | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / |
title_exact_search | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / |
title_full | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / Tarek Amr. |
title_fullStr | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / Tarek Amr. |
title_full_unstemmed | Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / Tarek Amr. |
title_short | Hands-on machine learning with scikit-learn and scientific Python toolkits : |
title_sort | hands on machine learning with scikit learn and scientific python toolkits a practical guide to implementing supervised and unsupervised machine learning algorithms in python |
title_sub | a practical guide to implementing supervised and unsupervised machine learning algorithms in Python / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Apprentissage automatique. Python (Langage de programmation) Machine learning fast Python (Computer program language) fast Python (programmeertaal). nbdbt |
topic_facet | Machine learning. Python (Computer program language) Apprentissage automatique. Python (Langage de programmation) Machine learning Python (programmeertaal). |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2562942 |
work_keys_str_mv | AT amrtarek handsonmachinelearningwithscikitlearnandscientificpythontoolkitsapracticalguidetoimplementingsupervisedandunsupervisedmachinelearningalgorithmsinpython |