Hands-on mathematics for deep learning :: build a solid mathematical foundation for training efficient deep neural networks /
The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models. |
Beschreibung: | 1 online resource |
ISBN: | 9781838641849 183864184X |
Internformat
MARC
LEADER | 00000cam a22000001i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1175108997 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 200316s2020 enk o 000 0 eng d | ||
040 | |a UKMGB |b eng |e rda |e pn |c UKMGB |d OCLCO |d EBLCP |d UKAHL |d N$T |d UMI |d YDX |d OCLCO |d OCLCQ | ||
015 | |a GBC050128 |2 bnb | ||
016 | 7 | |a 019760802 |2 Uk | |
019 | |a 1158667040 |a 1159163990 |a 1200095164 | ||
020 | |a 9781838641849 |q electronic book | ||
020 | |a 183864184X |q electronic book | ||
020 | |z 9781838647292 |q paperback | ||
035 | |a (OCoLC)1175108997 |z (OCoLC)1158667040 |z (OCoLC)1159163990 |z (OCoLC)1200095164 | ||
037 | |a 9781838641849 |b Packt Publishing | ||
050 | 4 | |a Q325.5 |b .D39 2020 | |
082 | 7 | |a 006.3101515 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Dawani, Jay, |e author. | |
245 | 1 | 0 | |a Hands-on mathematics for deep learning : |b build a solid mathematical foundation for training efficient deep neural networks / |c Jay Dawani. |
264 | 1 | |a Birmingham : |b Packt Publishing, |c 2020. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space | |
505 | 8 | |a Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives | |
505 | 8 | |a Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution | |
505 | 8 | |a Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems | |
505 | 8 | |a Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology | |
520 | |a The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models. | ||
650 | 0 | |a Machine learning |x Mathematics. | |
650 | 6 | |a Apprentissage automatique |x Mathématiques. | |
776 | 0 | 8 | |i Print version: |z 9781838647292 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500101 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37330856 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6229062 | ||
938 | |a EBSCOhost |b EBSC |n 2500101 | ||
938 | |a YBP Library Services |b YANK |n 301337285 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1175108997 |
---|---|
_version_ | 1816882525151166465 |
adam_text | |
any_adam_object | |
author | Dawani, Jay |
author_facet | Dawani, Jay |
author_role | aut |
author_sort | Dawani, Jay |
author_variant | j d jd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .D39 2020 |
callnumber-search | Q325.5 .D39 2020 |
callnumber-sort | Q 3325.5 D39 42020 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology |
ctrlnum | (OCoLC)1175108997 |
dewey-full | 006.3101515 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3101515 |
dewey-search | 006.3101515 |
dewey-sort | 16.3101515 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05040cam a22005051i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1175108997</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">200316s2020 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKMGB</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC050128</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019760802</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1158667040</subfield><subfield code="a">1159163990</subfield><subfield code="a">1200095164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838641849</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">183864184X</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838647292</subfield><subfield code="q">paperback</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1175108997</subfield><subfield code="z">(OCoLC)1158667040</subfield><subfield code="z">(OCoLC)1159163990</subfield><subfield code="z">(OCoLC)1200095164</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838641849</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.D39 2020</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3101515</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dawani, Jay,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on mathematics for deep learning :</subfield><subfield code="b">build a solid mathematical foundation for training efficient deep neural networks /</subfield><subfield code="c">Jay Dawani.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781838647292</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500101</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37330856</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6229062</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2500101</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301337285</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1175108997 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:00Z |
institution | BVB |
isbn | 9781838641849 183864184X |
language | English |
oclc_num | 1175108997 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Dawani, Jay, author. Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / Jay Dawani. Birmingham : Packt Publishing, 2020. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology The main aim of this book is to make the advanced mathematical background accessible to someone with a programming background. This book will equip the readers with not only deep learning architectures but the mathematics behind them. With this book, you will understand the relevant mathematics that goes behind building deep learning models. Machine learning Mathematics. Apprentissage automatique Mathématiques. Print version: 9781838647292 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500101 Volltext |
spellingShingle | Dawani, Jay Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / Intro -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Essential Mathematics for Deep Learning -- Linear Algebra -- Comparing scalars and vectors -- Linear equations -- Solving linear equations in n-dimensions -- Solving linear equations using elimination -- Matrix operations -- Adding matrices -- Multiplying matrices -- Inverse matrices -- Matrix transpose -- Permutations -- Vector spaces and subspaces -- Spaces -- Subspaces -- Linear maps -- Image and kernel -- Metric space and normed space -- Inner product space Matrix decompositions -- Determinant -- Eigenvalues and eigenvectors -- Trace -- Orthogonal matrices -- Diagonalization and symmetric matrices -- Singular value decomposition -- Cholesky decomposition -- Summary -- Vector Calculus -- Single variable calculus -- Derivatives -- Sum rule -- Power rule -- Trigonometric functions -- First and second derivatives -- Product rule -- Quotient rule -- Chain rule -- Antiderivative -- Integrals -- The fundamental theorem of calculus -- Substitution rule -- Areas between curves -- Integration by parts -- Multivariable calculus -- Partial derivatives Chain rule -- Integrals -- Vector calculus -- Derivatives -- Vector fields -- Inverse functions -- Summary -- Probability and Statistics -- Understanding the concepts in probability -- Classical probability -- Sampling with or without replacement -- Multinomial coefficient -- Stirling's formula -- Independence -- Discrete distributions -- Conditional probability -- Random variables -- Variance -- Multiple random variables -- Continuous random variables -- Joint distributions -- More probability distributions -- Normal distribution -- Multivariate normal distribution Bivariate normal distribution -- Gamma distribution -- Essential concepts in statistics -- Estimation -- Mean squared error -- Sufficiency -- Likelihood -- Confidence intervals -- Bayesian estimation -- Hypothesis testing -- Simple hypotheses -- Composite hypothesis -- The multivariate normal theory -- Linear models -- Hypothesis testing -- Summary -- Optimization -- Understanding optimization and it's different types -- Constrained optimization -- Unconstrained optimization -- Convex optimization -- Convex sets -- Affine sets -- Convex functions -- Optimization problems Non-convex optimization -- Exploring the various optimization methods -- Least squares -- Lagrange multipliers -- Newton's method -- The secant method -- The quasi-Newton method -- Game theory -- Descent methods -- Gradient descent -- Stochastic gradient descent -- Loss functions -- Gradient descent with momentum -- The Nesterov's accelerated gradient -- Adaptive gradient descent -- Simulated annealing -- Natural evolution -- Exploring population methods -- Genetic algorithms -- Particle swarm optimization -- Summary -- Graph Theory -- Understanding the basic concepts and terminology Machine learning Mathematics. Apprentissage automatique Mathématiques. |
title | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / |
title_auth | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / |
title_exact_search | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / |
title_full | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / Jay Dawani. |
title_fullStr | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / Jay Dawani. |
title_full_unstemmed | Hands-on mathematics for deep learning : build a solid mathematical foundation for training efficient deep neural networks / Jay Dawani. |
title_short | Hands-on mathematics for deep learning : |
title_sort | hands on mathematics for deep learning build a solid mathematical foundation for training efficient deep neural networks |
title_sub | build a solid mathematical foundation for training efficient deep neural networks / |
topic | Machine learning Mathematics. Apprentissage automatique Mathématiques. |
topic_facet | Machine learning Mathematics. Apprentissage automatique Mathématiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500101 |
work_keys_str_mv | AT dawanijay handsonmathematicsfordeeplearningbuildasolidmathematicalfoundationfortrainingefficientdeepneuralnetworks |