Fractional calculus in analysis, dynamics, and optimal control /:
This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geom...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Publishers,
[2014]
|
Schriftenreihe: | Mathematics research developments series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analog. |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781629486598 1629486590 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1162537691 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 131031s2014 nyu ob 001 0 eng | ||
010 | |a 2020688363 | ||
040 | |a DLC |b eng |e rda |c DLC |d OCLCF |d VLY |d OCLCO |d N$T |d YDXCP |d OSU |d DEBSZ |d E7B |d EBLCP |d AGLDB |d OTZ |d VTS |d STF |d M8D |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 873806010 |a 878141350 |a 918623804 |a 923674221 |a 928195381 | ||
020 | |a 9781629486598 |q ebook | ||
020 | |a 1629486590 | ||
020 | |z 1629486353 |q hardcover | ||
020 | |z 9781629486352 |q hardcover | ||
035 | |a (OCoLC)1162537691 |z (OCoLC)873806010 |z (OCoLC)878141350 |z (OCoLC)918623804 |z (OCoLC)923674221 |z (OCoLC)928195381 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QA314 |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.83 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Fractional calculus in analysis, dynamics, and optimal control / |c Jacky Cresson, editor. |
264 | 1 | |a New York : |b Nova Publishers, |c [2014] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics Research Developments | |
504 | |a Includes bibliographical references and index. | ||
588 | |a Description based on print version record. | ||
505 | 0 | |a ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: LOCAL FRACTIONAL DERIVATIVES""; ""1. Introduction""; ""2. Non-differentiable and Non-analytic Functions""; ""3. Measure and Dimension""; ""4. Fractional Calculus""; ""5. Generalizations""; ""Acknowledgment""; ""References""; ""Chapter 2: FRACTIONAL VARIATIONAL EMBEDDING AND LAGRANGIAN FORMULATIONS OF DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS""; ""1. Introduction"" | |
505 | 8 | |a ""2. Variational Principles and Dissipative Systems""""3. Embeddings Formalisms of ODEs and PDEs""; ""4. Asymmetric Fractional Embedding""; ""5. Fractional Variational Formulation of Dissipative Ordinary Differential Equations""; ""6. Variational Formulation of Dissipative Partial Differential Equations""; ""References""; ""Chapter 3: A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS AND FRACTIONAL PONTRYAGIN�S SYSTEMS. VARIATIONAL INTEGRATOR AND EXISTENCE OF CONTINUOUS/DISCRETE NOETHER�S THEOREMS""; ""Introduction""; ""1. A Class of Fractional Optimal Control Problems"" | |
505 | 8 | |a ""2. Variational Integrator for Fractional Pontryagin�s Systems""""References""; ""Chapter 4: FRACTAL TRAPS AND FRACTIONAL DYNAMICS""; ""Abstract""; ""1. Introduction""; ""2. Studied System""; ""3. Construction of a Simple Model""; ""4. Dynamical Traps and Anomalous Diffusion""; ""5. Fractional Infinitesimal Generator""; ""6. Discussion""; ""7. Conclusion""; ""References""; ""Chapter 5: NUMERICAL APPROXIMATIONS TO FRACTIONAL PROBLEMS OF THE CALCULUS OF VARIATIONS AND OPTIMAL CONTROL""; ""1. Introduction""; ""2. Expansion Formulas to Approximate Fractional Derivatives"" | |
505 | 8 | |a ""3. Direct Methods""""4. Indirect Methods""; ""5. Conclusion""; ""Acknowledgments""; ""References""; ""INDEX"" | |
520 | |a This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analog. | ||
546 | |a English. | ||
650 | 0 | |a Fractional calculus. |0 http://id.loc.gov/authorities/subjects/sh93004015 | |
650 | 6 | |a Dérivées fractionnaires. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Fractional calculus |2 fast | |
700 | 1 | |a Cresson, Jacky, |e editor. | |
758 | |i has work: |a Fractional Calculus in Analysis, Dynamics and Optimal Control (Text) |1 https://id.oclc.org/worldcat/entity/E39PCXQJvHXfdGGdQW8m9tVPkP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Fractional calculus in analysis, dynamics, and optimal control |d New York : Nova Publishers, [2014] |z 1629486353 (hardcover) |w (DLC) 2013043481 |
830 | 0 | |a Mathematics research developments series. |0 http://id.loc.gov/authorities/names/no2009139785 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=714795 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3023968 | ||
938 | |a ebrary |b EBRY |n ebr10849455 | ||
938 | |a EBSCOhost |b EBSC |n 714795 | ||
938 | |a YBP Library Services |b YANK |n 11320034 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1162537691 |
---|---|
_version_ | 1816882523881340930 |
adam_text | |
any_adam_object | |
author2 | Cresson, Jacky |
author2_role | edt |
author2_variant | j c jc |
author_facet | Cresson, Jacky |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA314 |
callnumber-raw | QA314 |
callnumber-search | QA314 |
callnumber-sort | QA 3314 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: LOCAL FRACTIONAL DERIVATIVES""; ""1. Introduction""; ""2. Non-differentiable and Non-analytic Functions""; ""3. Measure and Dimension""; ""4. Fractional Calculus""; ""5. Generalizations""; ""Acknowledgment""; ""References""; ""Chapter 2: FRACTIONAL VARIATIONAL EMBEDDING AND LAGRANGIAN FORMULATIONS OF DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS""; ""1. Introduction"" ""2. Variational Principles and Dissipative Systems""""3. Embeddings Formalisms of ODEs and PDEs""; ""4. Asymmetric Fractional Embedding""; ""5. Fractional Variational Formulation of Dissipative Ordinary Differential Equations""; ""6. Variational Formulation of Dissipative Partial Differential Equations""; ""References""; ""Chapter 3: A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS AND FRACTIONAL PONTRYAGIN�S SYSTEMS. VARIATIONAL INTEGRATOR AND EXISTENCE OF CONTINUOUS/DISCRETE NOETHER�S THEOREMS""; ""Introduction""; ""1. A Class of Fractional Optimal Control Problems"" ""2. Variational Integrator for Fractional Pontryagin�s Systems""""References""; ""Chapter 4: FRACTAL TRAPS AND FRACTIONAL DYNAMICS""; ""Abstract""; ""1. Introduction""; ""2. Studied System""; ""3. Construction of a Simple Model""; ""4. Dynamical Traps and Anomalous Diffusion""; ""5. Fractional Infinitesimal Generator""; ""6. Discussion""; ""7. Conclusion""; ""References""; ""Chapter 5: NUMERICAL APPROXIMATIONS TO FRACTIONAL PROBLEMS OF THE CALCULUS OF VARIATIONS AND OPTIMAL CONTROL""; ""1. Introduction""; ""2. Expansion Formulas to Approximate Fractional Derivatives"" ""3. Direct Methods""""4. Indirect Methods""; ""5. Conclusion""; ""Acknowledgments""; ""References""; ""INDEX"" |
ctrlnum | (OCoLC)1162537691 |
dewey-full | 515/.83 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.83 |
dewey-search | 515/.83 |
dewey-sort | 3515 283 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05104cam a2200625 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1162537691</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">131031s2014 nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2020688363</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">E7B</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OTZ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">873806010</subfield><subfield code="a">878141350</subfield><subfield code="a">918623804</subfield><subfield code="a">923674221</subfield><subfield code="a">928195381</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781629486598</subfield><subfield code="q">ebook</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1629486590</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1629486353</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781629486352</subfield><subfield code="q">hardcover</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1162537691</subfield><subfield code="z">(OCoLC)873806010</subfield><subfield code="z">(OCoLC)878141350</subfield><subfield code="z">(OCoLC)918623804</subfield><subfield code="z">(OCoLC)923674221</subfield><subfield code="z">(OCoLC)928195381</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QA314</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.83</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Fractional calculus in analysis, dynamics, and optimal control /</subfield><subfield code="c">Jacky Cresson, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Publishers,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics Research Developments</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: LOCAL FRACTIONAL DERIVATIVES""; ""1. Introduction""; ""2. Non-differentiable and Non-analytic Functions""; ""3. Measure and Dimension""; ""4. Fractional Calculus""; ""5. Generalizations""; ""Acknowledgment""; ""References""; ""Chapter 2: FRACTIONAL VARIATIONAL EMBEDDING AND LAGRANGIAN FORMULATIONS OF DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS""; ""1. Introduction""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""2. Variational Principles and Dissipative Systems""""3. Embeddings Formalisms of ODEs and PDEs""; ""4. Asymmetric Fractional Embedding""; ""5. Fractional Variational Formulation of Dissipative Ordinary Differential Equations""; ""6. Variational Formulation of Dissipative Partial Differential Equations""; ""References""; ""Chapter 3: A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS AND FRACTIONAL PONTRYAGINâ€?S SYSTEMS. VARIATIONAL INTEGRATOR AND EXISTENCE OF CONTINUOUS/DISCRETE NOETHERâ€?S THEOREMS""; ""Introduction""; ""1. A Class of Fractional Optimal Control Problems""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""2. Variational Integrator for Fractional Pontryaginâ€?s Systems""""References""; ""Chapter 4: FRACTAL TRAPS AND FRACTIONAL DYNAMICS""; ""Abstract""; ""1. Introduction""; ""2. Studied System""; ""3. Construction of a Simple Model""; ""4. Dynamical Traps and Anomalous Diffusion""; ""5. Fractional Infinitesimal Generator""; ""6. Discussion""; ""7. Conclusion""; ""References""; ""Chapter 5: NUMERICAL APPROXIMATIONS TO FRACTIONAL PROBLEMS OF THE CALCULUS OF VARIATIONS AND OPTIMAL CONTROL""; ""1. Introduction""; ""2. Expansion Formulas to Approximate Fractional Derivatives""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""3. Direct Methods""""4. Indirect Methods""; ""5. Conclusion""; ""Acknowledgments""; ""References""; ""INDEX""</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analog.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fractional calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93004015</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dérivées fractionnaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractional calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cresson, Jacky,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fractional Calculus in Analysis, Dynamics and Optimal Control (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCXQJvHXfdGGdQW8m9tVPkP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Fractional calculus in analysis, dynamics, and optimal control</subfield><subfield code="d">New York : Nova Publishers, [2014]</subfield><subfield code="z">1629486353 (hardcover)</subfield><subfield code="w">(DLC) 2013043481</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics research developments series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009139785</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=714795</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3023968</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10849455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">714795</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11320034</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1162537691 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:58Z |
institution | BVB |
isbn | 9781629486598 1629486590 |
language | English |
lccn | 2020688363 |
oclc_num | 1162537691 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Nova Publishers, |
record_format | marc |
series | Mathematics research developments series. |
series2 | Mathematics Research Developments |
spelling | Fractional calculus in analysis, dynamics, and optimal control / Jacky Cresson, editor. New York : Nova Publishers, [2014] 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics Research Developments Includes bibliographical references and index. Description based on print version record. ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: LOCAL FRACTIONAL DERIVATIVES""; ""1. Introduction""; ""2. Non-differentiable and Non-analytic Functions""; ""3. Measure and Dimension""; ""4. Fractional Calculus""; ""5. Generalizations""; ""Acknowledgment""; ""References""; ""Chapter 2: FRACTIONAL VARIATIONAL EMBEDDING AND LAGRANGIAN FORMULATIONS OF DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS""; ""1. Introduction"" ""2. Variational Principles and Dissipative Systems""""3. Embeddings Formalisms of ODEs and PDEs""; ""4. Asymmetric Fractional Embedding""; ""5. Fractional Variational Formulation of Dissipative Ordinary Differential Equations""; ""6. Variational Formulation of Dissipative Partial Differential Equations""; ""References""; ""Chapter 3: A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS AND FRACTIONAL PONTRYAGINâ€?S SYSTEMS. VARIATIONAL INTEGRATOR AND EXISTENCE OF CONTINUOUS/DISCRETE NOETHERâ€?S THEOREMS""; ""Introduction""; ""1. A Class of Fractional Optimal Control Problems"" ""2. Variational Integrator for Fractional Pontryaginâ€?s Systems""""References""; ""Chapter 4: FRACTAL TRAPS AND FRACTIONAL DYNAMICS""; ""Abstract""; ""1. Introduction""; ""2. Studied System""; ""3. Construction of a Simple Model""; ""4. Dynamical Traps and Anomalous Diffusion""; ""5. Fractional Infinitesimal Generator""; ""6. Discussion""; ""7. Conclusion""; ""References""; ""Chapter 5: NUMERICAL APPROXIMATIONS TO FRACTIONAL PROBLEMS OF THE CALCULUS OF VARIATIONS AND OPTIMAL CONTROL""; ""1. Introduction""; ""2. Expansion Formulas to Approximate Fractional Derivatives"" ""3. Direct Methods""""4. Indirect Methods""; ""5. Conclusion""; ""Acknowledgments""; ""References""; ""INDEX"" This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analog. English. Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast Cresson, Jacky, editor. has work: Fractional Calculus in Analysis, Dynamics and Optimal Control (Text) https://id.oclc.org/worldcat/entity/E39PCXQJvHXfdGGdQW8m9tVPkP https://id.oclc.org/worldcat/ontology/hasWork Print version: Fractional calculus in analysis, dynamics, and optimal control New York : Nova Publishers, [2014] 1629486353 (hardcover) (DLC) 2013043481 Mathematics research developments series. http://id.loc.gov/authorities/names/no2009139785 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=714795 Volltext |
spellingShingle | Fractional calculus in analysis, dynamics, and optimal control / Mathematics research developments series. ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""FRACTIONAL CALCULUS IN ANALYSIS, DYNAMICS AND OPTIMAL CONTROL""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: LOCAL FRACTIONAL DERIVATIVES""; ""1. Introduction""; ""2. Non-differentiable and Non-analytic Functions""; ""3. Measure and Dimension""; ""4. Fractional Calculus""; ""5. Generalizations""; ""Acknowledgment""; ""References""; ""Chapter 2: FRACTIONAL VARIATIONAL EMBEDDING AND LAGRANGIAN FORMULATIONS OF DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS""; ""1. Introduction"" ""2. Variational Principles and Dissipative Systems""""3. Embeddings Formalisms of ODEs and PDEs""; ""4. Asymmetric Fractional Embedding""; ""5. Fractional Variational Formulation of Dissipative Ordinary Differential Equations""; ""6. Variational Formulation of Dissipative Partial Differential Equations""; ""References""; ""Chapter 3: A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS AND FRACTIONAL PONTRYAGINâ€?S SYSTEMS. VARIATIONAL INTEGRATOR AND EXISTENCE OF CONTINUOUS/DISCRETE NOETHERâ€?S THEOREMS""; ""Introduction""; ""1. A Class of Fractional Optimal Control Problems"" ""2. Variational Integrator for Fractional Pontryaginâ€?s Systems""""References""; ""Chapter 4: FRACTAL TRAPS AND FRACTIONAL DYNAMICS""; ""Abstract""; ""1. Introduction""; ""2. Studied System""; ""3. Construction of a Simple Model""; ""4. Dynamical Traps and Anomalous Diffusion""; ""5. Fractional Infinitesimal Generator""; ""6. Discussion""; ""7. Conclusion""; ""References""; ""Chapter 5: NUMERICAL APPROXIMATIONS TO FRACTIONAL PROBLEMS OF THE CALCULUS OF VARIATIONS AND OPTIMAL CONTROL""; ""1. Introduction""; ""2. Expansion Formulas to Approximate Fractional Derivatives"" ""3. Direct Methods""""4. Indirect Methods""; ""5. Conclusion""; ""Acknowledgments""; ""References""; ""INDEX"" Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh93004015 |
title | Fractional calculus in analysis, dynamics, and optimal control / |
title_auth | Fractional calculus in analysis, dynamics, and optimal control / |
title_exact_search | Fractional calculus in analysis, dynamics, and optimal control / |
title_full | Fractional calculus in analysis, dynamics, and optimal control / Jacky Cresson, editor. |
title_fullStr | Fractional calculus in analysis, dynamics, and optimal control / Jacky Cresson, editor. |
title_full_unstemmed | Fractional calculus in analysis, dynamics, and optimal control / Jacky Cresson, editor. |
title_short | Fractional calculus in analysis, dynamics, and optimal control / |
title_sort | fractional calculus in analysis dynamics and optimal control |
topic | Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast |
topic_facet | Fractional calculus. Dérivées fractionnaires. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Fractional calculus |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=714795 |
work_keys_str_mv | AT cressonjacky fractionalcalculusinanalysisdynamicsandoptimalcontrol |