Computer vision /:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hauppauge, N.Y. :
Nova Science Publishers, Inc.,
[2011]
|
Schriftenreihe: | Computer science, technology and applications.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource : illustrations (some color). |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781620817018 1620817012 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1162241136 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 110127s2011 nyua ob 001 0 eng | ||
010 | |a 2020686885 | ||
040 | |a DLC |b eng |e rda |c DLC |d VLY |d OCLCO |d N$T |d YDXCP |d E7B |d OCLCF |d EBLCP |d AGLDB |d VTS |d AU@ |d STF |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 834129226 | ||
020 | |a 9781620817018 |q (ebook) | ||
020 | |a 1620817012 | ||
020 | |z 9781612093994 |q (hardcover) | ||
020 | |z 161209399X | ||
035 | |a (OCoLC)1162241136 |z (OCoLC)834129226 | ||
050 | 0 | 0 | |a TA1634 |
072 | 7 | |a COM |x 016000 |2 bisacsh | |
082 | 7 | |a 006.3/7 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Computer vision / |c Sota R. Yoshida, editor. |
264 | 1 | |a Hauppauge, N.Y. : |b Nova Science Publishers, Inc., |c [2011] | |
300 | |a 1 online resource : |b illustrations (some color). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Computer science, technology and applications | |
504 | |a Includes bibliographical references and index. | ||
588 | |a Description based on print version record. | ||
546 | |a English. | ||
505 | 0 | |a PREFACE ; SOME APPLICATIONS OF COMPUTER VISION SYSTEMS IN MICROMECHANICS ; ABSTRACT ; I. TEXTURE RECOGNITION TASK ; 1.1 Introduction ; 1.2 Metal surface texture recognition ; 1.3 The LIRA neural classifier ; 1.3.1. Image coding ; 1.3.2 Training procedure ; 1.3.3 Recognition procedure ; 1.4 Results ; 1.5 Discussion ; 1.6. Conclusion ; II. TASK OF SHAPE RECOGNITION OF SMALL SCREWS ; 2.1 Introduction ; 2.2 Neural Classifier LIRA_grayscale ; 2.2.1 Architecture ; 2.2.2 Layer interconnections and neuron activation ; 2.2.3 Learning method. | |
505 | 8 | |a 2.2.3.1. Initial phase. 2.2.3.2. Winner selection scheme. ; 2.2.3.3. Weights adaptation. ; 2.2.4. Improvements in learning process ; 2.3 Results ; 2.4 Conclusion ; III. TASK OF MICRO WORK PIECE RECOGNITION WITH LIRA NEURAL CLASSIFIER ; 3.1 Introduction ; 3.2 State of the art and related works ; 3.2.1. Pattern matching method ; 3.2.2. Principal components analysis method ; 3.2.3. Graph matching method ; 3.2.4. Generalized Hough transform (GHT) ; 3.3 Technical Vision Subsystem (TVS) ; 3.4. Neural classi er ; 3.4.1. The structure ; 3.4.2. Training process. | |
505 | 8 | |a 3.4.3. Distortions 3.5 Software and databases ; 3.5.1. The developed software ; 3.5.2. Databases ; 3.5.3. Chosen work pieces ; 3.5.4. Databases description ; 3. 6. Experiments and results ; 3.6.1. Work piece recognition with grey scale images ; 3.6.2. Experiments with distortions ; 3.6.3. Work piece recognition in contour images ; 3.6.4. Experiments with database II and position recognition ; 3.6.5. Position recognition ; 3.7 Discussion ; 3.8 Conclusion ; ACKNOWLEDGMENT ; REFERENCES ; A SURVEY OF FACE RECOGNITION BY THE GENETIC ALGORITHM ; ABSTRACT. | |
505 | 8 | |a INTRODUCTION THEORY AND EXPERIMENTAL SETTING ; A. Genetic encoding ; B. Genetic algorithm and decoding ; C. Experimental setting ; EXPERIMENT AND COMPARISON ; CONCLUSION ; ACKNOWLEDGMENT ; REFERENCES ; THE ATTENTIVE CO-PILOT: ROBUST DRIVER ASSISTANCE RELYING ON HUMAN-LIKE SIGNAL PROCESSING PRINCIPLES; Abstract; 1. Introduction into Advanced Driver Assistance Systems; 2. RelatedWork Advanced Driver Assistance; 3. The "Attentive Co-Pilot" -- System Description; 4. Visual Attention Sub-System; 4.1. RelatedWork; 4.2. Attention Features; 4.2.1. Intensity Feature; BiologicalMotivation. | |
505 | 8 | |a Parameterization of the DoG KernelDiscussion; 4.2.2. Orientation Feature; BiologicalMotivation; Parameterization of the Gabor Kernel; Conceptional Extensions; Discussion; 4.2.3. RGBY Color Space; BiologicalMotivation; Computation of RGBY Colors; Conceptional Extensions; Discussion; 4.3. Real-World Challenges for Top-Down Attention Systems; 4.4. Attention System Description; 4.5. Functional Comparison to Other Top-Down AttentionModels; 4.6. Application notes: Attention-based Recognition of Traf c Signs; 4.6.1. RelatedWork -- Detection Phase; 4.6.2. RelatedWork -- Classi cation Phase. | |
505 | 8 | |a 4.6.3. Detection Stage -- Attention System. | |
650 | 0 | |a Computer vision. |0 http://id.loc.gov/authorities/subjects/sh85029549 | |
650 | 6 | |a Vision par ordinateur. | |
650 | 7 | |a COMPUTERS |x Computer Vision & Pattern Recognition. |2 bisacsh | |
650 | 7 | |a Computer vision |2 fast | |
700 | 1 | |a Yoshida, Sota R., |e editor. | |
776 | 0 | 8 | |i Print version: |t Computer vision |d Hauppauge, N.Y. : Nova Science, c2011. |z 9781612093994 (hardcover) |w (DLC) 2010054279 |
830 | 0 | |a Computer science, technology and applications. |0 http://id.loc.gov/authorities/names/no2010162081 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541358 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL3021094 | ||
938 | |a ebrary |b EBRY |n ebr10681294 | ||
938 | |a EBSCOhost |b EBSC |n 541358 | ||
938 | |a YBP Library Services |b YANK |n 10371748 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1162241136 |
---|---|
_version_ | 1816882522373488640 |
adam_text | |
any_adam_object | |
author2 | Yoshida, Sota R. |
author2_role | edt |
author2_variant | s r y sr sry |
author_facet | Yoshida, Sota R. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA1634 |
callnumber-raw | TA1634 |
callnumber-search | TA1634 |
callnumber-sort | TA 41634 |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | PREFACE ; SOME APPLICATIONS OF COMPUTER VISION SYSTEMS IN MICROMECHANICS ; ABSTRACT ; I. TEXTURE RECOGNITION TASK ; 1.1 Introduction ; 1.2 Metal surface texture recognition ; 1.3 The LIRA neural classifier ; 1.3.1. Image coding ; 1.3.2 Training procedure ; 1.3.3 Recognition procedure ; 1.4 Results ; 1.5 Discussion ; 1.6. Conclusion ; II. TASK OF SHAPE RECOGNITION OF SMALL SCREWS ; 2.1 Introduction ; 2.2 Neural Classifier LIRA_grayscale ; 2.2.1 Architecture ; 2.2.2 Layer interconnections and neuron activation ; 2.2.3 Learning method. 2.2.3.1. Initial phase. 2.2.3.2. Winner selection scheme. ; 2.2.3.3. Weights adaptation. ; 2.2.4. Improvements in learning process ; 2.3 Results ; 2.4 Conclusion ; III. TASK OF MICRO WORK PIECE RECOGNITION WITH LIRA NEURAL CLASSIFIER ; 3.1 Introduction ; 3.2 State of the art and related works ; 3.2.1. Pattern matching method ; 3.2.2. Principal components analysis method ; 3.2.3. Graph matching method ; 3.2.4. Generalized Hough transform (GHT) ; 3.3 Technical Vision Subsystem (TVS) ; 3.4. Neural classi er ; 3.4.1. The structure ; 3.4.2. Training process. 3.4.3. Distortions 3.5 Software and databases ; 3.5.1. The developed software ; 3.5.2. Databases ; 3.5.3. Chosen work pieces ; 3.5.4. Databases description ; 3. 6. Experiments and results ; 3.6.1. Work piece recognition with grey scale images ; 3.6.2. Experiments with distortions ; 3.6.3. Work piece recognition in contour images ; 3.6.4. Experiments with database II and position recognition ; 3.6.5. Position recognition ; 3.7 Discussion ; 3.8 Conclusion ; ACKNOWLEDGMENT ; REFERENCES ; A SURVEY OF FACE RECOGNITION BY THE GENETIC ALGORITHM ; ABSTRACT. INTRODUCTION THEORY AND EXPERIMENTAL SETTING ; A. Genetic encoding ; B. Genetic algorithm and decoding ; C. Experimental setting ; EXPERIMENT AND COMPARISON ; CONCLUSION ; ACKNOWLEDGMENT ; REFERENCES ; THE ATTENTIVE CO-PILOT: ROBUST DRIVER ASSISTANCE RELYING ON HUMAN-LIKE SIGNAL PROCESSING PRINCIPLES; Abstract; 1. Introduction into Advanced Driver Assistance Systems; 2. RelatedWork Advanced Driver Assistance; 3. The "Attentive Co-Pilot" -- System Description; 4. Visual Attention Sub-System; 4.1. RelatedWork; 4.2. Attention Features; 4.2.1. Intensity Feature; BiologicalMotivation. Parameterization of the DoG KernelDiscussion; 4.2.2. Orientation Feature; BiologicalMotivation; Parameterization of the Gabor Kernel; Conceptional Extensions; Discussion; 4.2.3. RGBY Color Space; BiologicalMotivation; Computation of RGBY Colors; Conceptional Extensions; Discussion; 4.3. Real-World Challenges for Top-Down Attention Systems; 4.4. Attention System Description; 4.5. Functional Comparison to Other Top-Down AttentionModels; 4.6. Application notes: Attention-based Recognition of Traf c Signs; 4.6.1. RelatedWork -- Detection Phase; 4.6.2. RelatedWork -- Classi cation Phase. 4.6.3. Detection Stage -- Attention System. |
ctrlnum | (OCoLC)1162241136 |
dewey-full | 006.3/7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/7 |
dewey-search | 006.3/7 |
dewey-sort | 16.3 17 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05052cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1162241136</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">110127s2011 nyua ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2020686885</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AGLDB</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">834129226</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781620817018</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1620817012</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781612093994</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">161209399X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1162241136</subfield><subfield code="z">(OCoLC)834129226</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">TA1634</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/7</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Computer vision /</subfield><subfield code="c">Sota R. Yoshida, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hauppauge, N.Y. :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations (some color).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computer science, technology and applications</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">PREFACE ; SOME APPLICATIONS OF COMPUTER VISION SYSTEMS IN MICROMECHANICS ; ABSTRACT ; I. TEXTURE RECOGNITION TASK ; 1.1 Introduction ; 1.2 Metal surface texture recognition ; 1.3 The LIRA neural classifier ; 1.3.1. Image coding ; 1.3.2 Training procedure ; 1.3.3 Recognition procedure ; 1.4 Results ; 1.5 Discussion ; 1.6. Conclusion ; II. TASK OF SHAPE RECOGNITION OF SMALL SCREWS ; 2.1 Introduction ; 2.2 Neural Classifier LIRA_grayscale ; 2.2.1 Architecture ; 2.2.2 Layer interconnections and neuron activation ; 2.2.3 Learning method.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.3.1. Initial phase. 2.2.3.2. Winner selection scheme. ; 2.2.3.3. Weights adaptation. ; 2.2.4. Improvements in learning process ; 2.3 Results ; 2.4 Conclusion ; III. TASK OF MICRO WORK PIECE RECOGNITION WITH LIRA NEURAL CLASSIFIER ; 3.1 Introduction ; 3.2 State of the art and related works ; 3.2.1. Pattern matching method ; 3.2.2. Principal components analysis method ; 3.2.3. Graph matching method ; 3.2.4. Generalized Hough transform (GHT) ; 3.3 Technical Vision Subsystem (TVS) ; 3.4. Neural classi er ; 3.4.1. The structure ; 3.4.2. Training process.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.3. Distortions 3.5 Software and databases ; 3.5.1. The developed software ; 3.5.2. Databases ; 3.5.3. Chosen work pieces ; 3.5.4. Databases description ; 3. 6. Experiments and results ; 3.6.1. Work piece recognition with grey scale images ; 3.6.2. Experiments with distortions ; 3.6.3. Work piece recognition in contour images ; 3.6.4. Experiments with database II and position recognition ; 3.6.5. Position recognition ; 3.7 Discussion ; 3.8 Conclusion ; ACKNOWLEDGMENT ; REFERENCES ; A SURVEY OF FACE RECOGNITION BY THE GENETIC ALGORITHM ; ABSTRACT.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">INTRODUCTION THEORY AND EXPERIMENTAL SETTING ; A. Genetic encoding ; B. Genetic algorithm and decoding ; C. Experimental setting ; EXPERIMENT AND COMPARISON ; CONCLUSION ; ACKNOWLEDGMENT ; REFERENCES ; THE ATTENTIVE CO-PILOT: ROBUST DRIVER ASSISTANCE RELYING ON HUMAN-LIKE SIGNAL PROCESSING PRINCIPLES; Abstract; 1. Introduction into Advanced Driver Assistance Systems; 2. RelatedWork Advanced Driver Assistance; 3. The "Attentive Co-Pilot" -- System Description; 4. Visual Attention Sub-System; 4.1. RelatedWork; 4.2. Attention Features; 4.2.1. Intensity Feature; BiologicalMotivation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Parameterization of the DoG KernelDiscussion; 4.2.2. Orientation Feature; BiologicalMotivation; Parameterization of the Gabor Kernel; Conceptional Extensions; Discussion; 4.2.3. RGBY Color Space; BiologicalMotivation; Computation of RGBY Colors; Conceptional Extensions; Discussion; 4.3. Real-World Challenges for Top-Down Attention Systems; 4.4. Attention System Description; 4.5. Functional Comparison to Other Top-Down AttentionModels; 4.6. Application notes: Attention-based Recognition of Traf c Signs; 4.6.1. RelatedWork -- Detection Phase; 4.6.2. RelatedWork -- Classi cation Phase.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.3. Detection Stage -- Attention System.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer vision.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Vision par ordinateur.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Vision & Pattern Recognition.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer vision</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Sota R.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Computer vision</subfield><subfield code="d">Hauppauge, N.Y. : Nova Science, c2011.</subfield><subfield code="z">9781612093994 (hardcover)</subfield><subfield code="w">(DLC) 2010054279</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computer science, technology and applications.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010162081</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541358</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3021094</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10681294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">541358</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10371748</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1162241136 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:57Z |
institution | BVB |
isbn | 9781620817018 1620817012 |
language | English |
lccn | 2020686885 |
oclc_num | 1162241136 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations (some color). |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
series | Computer science, technology and applications. |
series2 | Computer science, technology and applications |
spelling | Computer vision / Sota R. Yoshida, editor. Hauppauge, N.Y. : Nova Science Publishers, Inc., [2011] 1 online resource : illustrations (some color). text txt rdacontent computer c rdamedia online resource cr rdacarrier Computer science, technology and applications Includes bibliographical references and index. Description based on print version record. English. PREFACE ; SOME APPLICATIONS OF COMPUTER VISION SYSTEMS IN MICROMECHANICS ; ABSTRACT ; I. TEXTURE RECOGNITION TASK ; 1.1 Introduction ; 1.2 Metal surface texture recognition ; 1.3 The LIRA neural classifier ; 1.3.1. Image coding ; 1.3.2 Training procedure ; 1.3.3 Recognition procedure ; 1.4 Results ; 1.5 Discussion ; 1.6. Conclusion ; II. TASK OF SHAPE RECOGNITION OF SMALL SCREWS ; 2.1 Introduction ; 2.2 Neural Classifier LIRA_grayscale ; 2.2.1 Architecture ; 2.2.2 Layer interconnections and neuron activation ; 2.2.3 Learning method. 2.2.3.1. Initial phase. 2.2.3.2. Winner selection scheme. ; 2.2.3.3. Weights adaptation. ; 2.2.4. Improvements in learning process ; 2.3 Results ; 2.4 Conclusion ; III. TASK OF MICRO WORK PIECE RECOGNITION WITH LIRA NEURAL CLASSIFIER ; 3.1 Introduction ; 3.2 State of the art and related works ; 3.2.1. Pattern matching method ; 3.2.2. Principal components analysis method ; 3.2.3. Graph matching method ; 3.2.4. Generalized Hough transform (GHT) ; 3.3 Technical Vision Subsystem (TVS) ; 3.4. Neural classi er ; 3.4.1. The structure ; 3.4.2. Training process. 3.4.3. Distortions 3.5 Software and databases ; 3.5.1. The developed software ; 3.5.2. Databases ; 3.5.3. Chosen work pieces ; 3.5.4. Databases description ; 3. 6. Experiments and results ; 3.6.1. Work piece recognition with grey scale images ; 3.6.2. Experiments with distortions ; 3.6.3. Work piece recognition in contour images ; 3.6.4. Experiments with database II and position recognition ; 3.6.5. Position recognition ; 3.7 Discussion ; 3.8 Conclusion ; ACKNOWLEDGMENT ; REFERENCES ; A SURVEY OF FACE RECOGNITION BY THE GENETIC ALGORITHM ; ABSTRACT. INTRODUCTION THEORY AND EXPERIMENTAL SETTING ; A. Genetic encoding ; B. Genetic algorithm and decoding ; C. Experimental setting ; EXPERIMENT AND COMPARISON ; CONCLUSION ; ACKNOWLEDGMENT ; REFERENCES ; THE ATTENTIVE CO-PILOT: ROBUST DRIVER ASSISTANCE RELYING ON HUMAN-LIKE SIGNAL PROCESSING PRINCIPLES; Abstract; 1. Introduction into Advanced Driver Assistance Systems; 2. RelatedWork Advanced Driver Assistance; 3. The "Attentive Co-Pilot" -- System Description; 4. Visual Attention Sub-System; 4.1. RelatedWork; 4.2. Attention Features; 4.2.1. Intensity Feature; BiologicalMotivation. Parameterization of the DoG KernelDiscussion; 4.2.2. Orientation Feature; BiologicalMotivation; Parameterization of the Gabor Kernel; Conceptional Extensions; Discussion; 4.2.3. RGBY Color Space; BiologicalMotivation; Computation of RGBY Colors; Conceptional Extensions; Discussion; 4.3. Real-World Challenges for Top-Down Attention Systems; 4.4. Attention System Description; 4.5. Functional Comparison to Other Top-Down AttentionModels; 4.6. Application notes: Attention-based Recognition of Traf c Signs; 4.6.1. RelatedWork -- Detection Phase; 4.6.2. RelatedWork -- Classi cation Phase. 4.6.3. Detection Stage -- Attention System. Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS Computer Vision & Pattern Recognition. bisacsh Computer vision fast Yoshida, Sota R., editor. Print version: Computer vision Hauppauge, N.Y. : Nova Science, c2011. 9781612093994 (hardcover) (DLC) 2010054279 Computer science, technology and applications. http://id.loc.gov/authorities/names/no2010162081 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541358 Volltext |
spellingShingle | Computer vision / Computer science, technology and applications. PREFACE ; SOME APPLICATIONS OF COMPUTER VISION SYSTEMS IN MICROMECHANICS ; ABSTRACT ; I. TEXTURE RECOGNITION TASK ; 1.1 Introduction ; 1.2 Metal surface texture recognition ; 1.3 The LIRA neural classifier ; 1.3.1. Image coding ; 1.3.2 Training procedure ; 1.3.3 Recognition procedure ; 1.4 Results ; 1.5 Discussion ; 1.6. Conclusion ; II. TASK OF SHAPE RECOGNITION OF SMALL SCREWS ; 2.1 Introduction ; 2.2 Neural Classifier LIRA_grayscale ; 2.2.1 Architecture ; 2.2.2 Layer interconnections and neuron activation ; 2.2.3 Learning method. 2.2.3.1. Initial phase. 2.2.3.2. Winner selection scheme. ; 2.2.3.3. Weights adaptation. ; 2.2.4. Improvements in learning process ; 2.3 Results ; 2.4 Conclusion ; III. TASK OF MICRO WORK PIECE RECOGNITION WITH LIRA NEURAL CLASSIFIER ; 3.1 Introduction ; 3.2 State of the art and related works ; 3.2.1. Pattern matching method ; 3.2.2. Principal components analysis method ; 3.2.3. Graph matching method ; 3.2.4. Generalized Hough transform (GHT) ; 3.3 Technical Vision Subsystem (TVS) ; 3.4. Neural classi er ; 3.4.1. The structure ; 3.4.2. Training process. 3.4.3. Distortions 3.5 Software and databases ; 3.5.1. The developed software ; 3.5.2. Databases ; 3.5.3. Chosen work pieces ; 3.5.4. Databases description ; 3. 6. Experiments and results ; 3.6.1. Work piece recognition with grey scale images ; 3.6.2. Experiments with distortions ; 3.6.3. Work piece recognition in contour images ; 3.6.4. Experiments with database II and position recognition ; 3.6.5. Position recognition ; 3.7 Discussion ; 3.8 Conclusion ; ACKNOWLEDGMENT ; REFERENCES ; A SURVEY OF FACE RECOGNITION BY THE GENETIC ALGORITHM ; ABSTRACT. INTRODUCTION THEORY AND EXPERIMENTAL SETTING ; A. Genetic encoding ; B. Genetic algorithm and decoding ; C. Experimental setting ; EXPERIMENT AND COMPARISON ; CONCLUSION ; ACKNOWLEDGMENT ; REFERENCES ; THE ATTENTIVE CO-PILOT: ROBUST DRIVER ASSISTANCE RELYING ON HUMAN-LIKE SIGNAL PROCESSING PRINCIPLES; Abstract; 1. Introduction into Advanced Driver Assistance Systems; 2. RelatedWork Advanced Driver Assistance; 3. The "Attentive Co-Pilot" -- System Description; 4. Visual Attention Sub-System; 4.1. RelatedWork; 4.2. Attention Features; 4.2.1. Intensity Feature; BiologicalMotivation. Parameterization of the DoG KernelDiscussion; 4.2.2. Orientation Feature; BiologicalMotivation; Parameterization of the Gabor Kernel; Conceptional Extensions; Discussion; 4.2.3. RGBY Color Space; BiologicalMotivation; Computation of RGBY Colors; Conceptional Extensions; Discussion; 4.3. Real-World Challenges for Top-Down Attention Systems; 4.4. Attention System Description; 4.5. Functional Comparison to Other Top-Down AttentionModels; 4.6. Application notes: Attention-based Recognition of Traf c Signs; 4.6.1. RelatedWork -- Detection Phase; 4.6.2. RelatedWork -- Classi cation Phase. 4.6.3. Detection Stage -- Attention System. Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS Computer Vision & Pattern Recognition. bisacsh Computer vision fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029549 |
title | Computer vision / |
title_auth | Computer vision / |
title_exact_search | Computer vision / |
title_full | Computer vision / Sota R. Yoshida, editor. |
title_fullStr | Computer vision / Sota R. Yoshida, editor. |
title_full_unstemmed | Computer vision / Sota R. Yoshida, editor. |
title_short | Computer vision / |
title_sort | computer vision |
topic | Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS Computer Vision & Pattern Recognition. bisacsh Computer vision fast |
topic_facet | Computer vision. Vision par ordinateur. COMPUTERS Computer Vision & Pattern Recognition. Computer vision |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541358 |
work_keys_str_mv | AT yoshidasotar computervision |