Deep reinforcement learning hands-on :: apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more /
With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perfor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing Ltd.,
[2020]
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781838820046 1838820043 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1147823256 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 200131s2020 enk ob 001 0 eng d | ||
040 | |a UKAHL |b eng |e rda |e pn |c UKAHL |d N$T |d YDXIT |d UKMGB |d OCLCF |d UMI |d EBLCP |d YDX |d OCLCQ |d DST |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBC024312 |2 bnb | ||
016 | 7 | |a 019711801 |2 Uk | |
019 | |a 1139768112 |a 1139913921 |a 1144826163 |a 1176246167 | ||
020 | |a 9781838820046 |q (electronic book) | ||
020 | |a 1838820043 |q (electronic book) | ||
020 | |z 9781838826994 |q (pbk.) | ||
035 | |a (OCoLC)1147823256 |z (OCoLC)1139768112 |z (OCoLC)1139913921 |z (OCoLC)1144826163 |z (OCoLC)1176246167 | ||
037 | |a 9781838820046 |b Packt Publishing | ||
050 | 4 | |a Q325.5 |b .L37 2020 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Lapan, Maxim, |e author. | |
245 | 1 | 0 | |a Deep reinforcement learning hands-on : |b apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / |c Maxim Lapan. |
250 | |a Second edition. | ||
264 | 1 | |a Birmingham, UK : |b Packt Publishing Ltd., |c [2020] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from digital title page (viewed on April 09, 2020). | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Table of ContentsWhat Is Reinforcement Learning?OpenAI GymDeep Learning with PyTorchThe Cross-Entropy MethodTabular Learning and the Bellman EquationDeep Q-NetworksHigher-Level RL librariesDQN ExtensionsWays to Speed up RLStocks Trading Using RLPolicy Gradients -- an AlternativeThe Actor-Critic MethodAsynchronous Advantage Actor-CriticTraining Chatbots with RLThe TextWorld environmentWeb NavigationContinuous Action SpaceRL in RoboticsTrust Regions -- PPO, TRPO, ACKTR, and SACBlack-Box Optimization in RLAdvanced explorationBeyond Model-Free -- ImaginationAlphaGo ZeroRL in Discrete OptimisationMulti-agent RL. | |
520 | |a With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | ||
650 | 0 | |a Reinforcement learning. |0 http://id.loc.gov/authorities/subjects/sh92000704 | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Natural language processing (Computer science) |0 http://id.loc.gov/authorities/subjects/sh88002425 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Natural Language Processing |0 https://id.nlm.nih.gov/mesh/D009323 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage par renforcement (Intelligence artificielle) | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Traitement automatique des langues naturelles. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Natural language processing (Computer science) |2 fast | |
650 | 7 | |a Reinforcement learning |2 fast | |
650 | 7 | |a Aprenentatge per reforç. |2 lemac | |
758 | |i has work: |a Deep reinforcement learning hands-on (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFMdXM9QdxRRWWrMjdCPcP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |z 9781838826994 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2366458 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37224364 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6034344 | ||
938 | |a EBSCOhost |b EBSC |n 2366458 | ||
938 | |a YBP Library Services |b YANK |n 301093578 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1147823256 |
---|---|
_version_ | 1816882514327764993 |
adam_text | |
any_adam_object | |
author | Lapan, Maxim |
author_facet | Lapan, Maxim |
author_role | aut |
author_sort | Lapan, Maxim |
author_variant | m l ml |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .L37 2020 |
callnumber-search | Q325.5 .L37 2020 |
callnumber-sort | Q 3325.5 L37 42020 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Table of ContentsWhat Is Reinforcement Learning?OpenAI GymDeep Learning with PyTorchThe Cross-Entropy MethodTabular Learning and the Bellman EquationDeep Q-NetworksHigher-Level RL librariesDQN ExtensionsWays to Speed up RLStocks Trading Using RLPolicy Gradients -- an AlternativeThe Actor-Critic MethodAsynchronous Advantage Actor-CriticTraining Chatbots with RLThe TextWorld environmentWeb NavigationContinuous Action SpaceRL in RoboticsTrust Regions -- PPO, TRPO, ACKTR, and SACBlack-Box Optimization in RLAdvanced explorationBeyond Model-Free -- ImaginationAlphaGo ZeroRL in Discrete OptimisationMulti-agent RL. |
ctrlnum | (OCoLC)1147823256 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04152cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1147823256</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">200131s2020 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKAHL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UKAHL</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXIT</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UMI</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC024312</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019711801</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1139768112</subfield><subfield code="a">1139913921</subfield><subfield code="a">1144826163</subfield><subfield code="a">1176246167</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838820046</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838820043</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838826994</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1147823256</subfield><subfield code="z">(OCoLC)1139768112</subfield><subfield code="z">(OCoLC)1139913921</subfield><subfield code="z">(OCoLC)1144826163</subfield><subfield code="z">(OCoLC)1176246167</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838820046</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.L37 2020</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lapan, Maxim,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep reinforcement learning hands-on :</subfield><subfield code="b">apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more /</subfield><subfield code="c">Maxim Lapan.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing Ltd.,</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on April 09, 2020).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Table of ContentsWhat Is Reinforcement Learning?OpenAI GymDeep Learning with PyTorchThe Cross-Entropy MethodTabular Learning and the Bellman EquationDeep Q-NetworksHigher-Level RL librariesDQN ExtensionsWays to Speed up RLStocks Trading Using RLPolicy Gradients -- an AlternativeThe Actor-Critic MethodAsynchronous Advantage Actor-CriticTraining Chatbots with RLThe TextWorld environmentWeb NavigationContinuous Action SpaceRL in RoboticsTrust Regions -- PPO, TRPO, ACKTR, and SACBlack-Box Optimization in RLAdvanced explorationBeyond Model-Free -- ImaginationAlphaGo ZeroRL in Discrete OptimisationMulti-agent RL.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reinforcement learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92000704</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88002425</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D009323</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage par renforcement (Intelligence artificielle)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement automatique des langues naturelles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reinforcement learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aprenentatge per reforç.</subfield><subfield code="2">lemac</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Deep reinforcement learning hands-on (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFMdXM9QdxRRWWrMjdCPcP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="z">9781838826994</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2366458</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37224364</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6034344</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2366458</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301093578</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1147823256 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:49Z |
institution | BVB |
isbn | 9781838820046 1838820043 |
language | English |
oclc_num | 1147823256 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing Ltd., |
record_format | marc |
spelling | Lapan, Maxim, author. Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / Maxim Lapan. Second edition. Birmingham, UK : Packt Publishing Ltd., [2020] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from digital title page (viewed on April 09, 2020). Includes bibliographical references and index. Table of ContentsWhat Is Reinforcement Learning?OpenAI GymDeep Learning with PyTorchThe Cross-Entropy MethodTabular Learning and the Bellman EquationDeep Q-NetworksHigher-Level RL librariesDQN ExtensionsWays to Speed up RLStocks Trading Using RLPolicy Gradients -- an AlternativeThe Actor-Critic MethodAsynchronous Advantage Actor-CriticTraining Chatbots with RLThe TextWorld environmentWeb NavigationContinuous Action SpaceRL in RoboticsTrust Regions -- PPO, TRPO, ACKTR, and SACBlack-Box Optimization in RLAdvanced explorationBeyond Model-Free -- ImaginationAlphaGo ZeroRL in Discrete OptimisationMulti-agent RL. With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks. Reinforcement learning. http://id.loc.gov/authorities/subjects/sh92000704 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage par renforcement (Intelligence artificielle) Apprentissage automatique. Traitement automatique des langues naturelles. Intelligence artificielle. artificial intelligence. aat Artificial intelligence fast Machine learning fast Natural language processing (Computer science) fast Reinforcement learning fast Aprenentatge per reforç. lemac has work: Deep reinforcement learning hands-on (Text) https://id.oclc.org/worldcat/entity/E39PCFMdXM9QdxRRWWrMjdCPcP https://id.oclc.org/worldcat/ontology/hasWork Print version : 9781838826994 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2366458 Volltext |
spellingShingle | Lapan, Maxim Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / Table of ContentsWhat Is Reinforcement Learning?OpenAI GymDeep Learning with PyTorchThe Cross-Entropy MethodTabular Learning and the Bellman EquationDeep Q-NetworksHigher-Level RL librariesDQN ExtensionsWays to Speed up RLStocks Trading Using RLPolicy Gradients -- an AlternativeThe Actor-Critic MethodAsynchronous Advantage Actor-CriticTraining Chatbots with RLThe TextWorld environmentWeb NavigationContinuous Action SpaceRL in RoboticsTrust Regions -- PPO, TRPO, ACKTR, and SACBlack-Box Optimization in RLAdvanced explorationBeyond Model-Free -- ImaginationAlphaGo ZeroRL in Discrete OptimisationMulti-agent RL. Reinforcement learning. http://id.loc.gov/authorities/subjects/sh92000704 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage par renforcement (Intelligence artificielle) Apprentissage automatique. Traitement automatique des langues naturelles. Intelligence artificielle. artificial intelligence. aat Artificial intelligence fast Machine learning fast Natural language processing (Computer science) fast Reinforcement learning fast Aprenentatge per reforç. lemac |
subject_GND | http://id.loc.gov/authorities/subjects/sh92000704 http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh88002425 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D009323 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / |
title_auth | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / |
title_exact_search | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / |
title_full | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / Maxim Lapan. |
title_fullStr | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / Maxim Lapan. |
title_full_unstemmed | Deep reinforcement learning hands-on : apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / Maxim Lapan. |
title_short | Deep reinforcement learning hands-on : |
title_sort | deep reinforcement learning hands on apply modern rl methods to practical problems of chatbots robotics discrete optimization web automation and more |
title_sub | apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more / |
topic | Reinforcement learning. http://id.loc.gov/authorities/subjects/sh92000704 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage par renforcement (Intelligence artificielle) Apprentissage automatique. Traitement automatique des langues naturelles. Intelligence artificielle. artificial intelligence. aat Artificial intelligence fast Machine learning fast Natural language processing (Computer science) fast Reinforcement learning fast Aprenentatge per reforç. lemac |
topic_facet | Reinforcement learning. Machine learning. Natural language processing (Computer science) Artificial intelligence. Natural Language Processing Artificial Intelligence Machine Learning Apprentissage par renforcement (Intelligence artificielle) Apprentissage automatique. Traitement automatique des langues naturelles. Intelligence artificielle. artificial intelligence. Artificial intelligence Machine learning Reinforcement learning Aprenentatge per reforç. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2366458 |
work_keys_str_mv | AT lapanmaxim deepreinforcementlearninghandsonapplymodernrlmethodstopracticalproblemsofchatbotsroboticsdiscreteoptimizationwebautomationandmore |